КАТАЛИЗАТОР ОКИСЛЕНИЯ Российский патент 2001 года по МПК B01J23/38 B01D53/86 

Описание патента на изобретение RU2175573C2

Настоящее изобретение относится к катализатору. В PCT/GB94/00321 раскрывается катализатор для использования при окислении углерода и углеводородов, который содержит пористый носитель из оксида алюминия, имеющий включенный (поглощенный) в него комплекс, содержащий золото, переходный металл, выбранный из кобальта и марганца, и оксид алюминия, причем концентрация золота на носителе составляет менее чем 2% по массе катализатора, и атомное соотношение золота к переходному металлу находится в интервале от 1:30 до 1:200. Из этих катализаторов предпочтительным является катализатор, который содержит кобальт в качестве переходного металла. Указывается, что оксид алюминия обладает большой площадью поверхности, обычно от 80 до 400 м2/г.

В PCT/GB95/02566 описывается катализатор, который содержит оксидный носитель, выбранный из оксида циркония, оксида церия и их смесей, имеющий включенный в нем благородный металл в каталитически эффективной форме. Предпочтительно, благородным металлом является золото, и, кроме того, присутствует оксид переходного металла, имеющий структуру шпинели, например оксид кобальта и оксид железа (3), причем золото связано с оксидом переходного металла. Этот катализатор также пригоден для каталитического окисления оксида углерода и углеводородов, и кроме того, для уменьшения содержания опасных закисей азота.

В PCT/US89/02375 раскрывается каталитический композит, содержащий первый носитель, который представляет собой тугоплавкий неорганический оксид с диспергированным в нем, по меньшей мере, одним компонентом благородного металла, выбранного из группы, состоящей из платины, палладия, родия, рутения и иридия, и диспергированным на нем верхним слоем, содержащим, по меньшей мере, один кислород-аккумулирующий компонент, и второй носитель, который представляет собой тугоплавкий неорганический оксид.

GB-A-2006038 описывает каталитическую систему, которая содержит носитель и каталитический материал, включающий платину и/или палладий, нанесенный на носитель, отличающуюся тем, что на носитель также нанесен молибден в количестве, по меньшей мере, 0,5 мас.% относительно веса носителя и не менее чем в 7 раз больше веса платины и/или палладия (аналог).

Краткое изложение изобретения
Катализатор для использования в каталитическом окислении оксида углерода и углеводородов, который содержит оксидный носитель, имеющий включенный в нем благородный металл в каталитически эффективной форме, отличается присутствием оксида титана, молибдена или их смесей. Присутствие оксида титана или молибдена или их смеси стабилизирует катализатор в присутствии серы, особенно в присутствии диоксида серы, и тем самым значительно улучшается стойкость серы катализатора, особенно при низкой температуре.

Кроме того, в соответствии с изобретением способ окисления оксида углерода или углеводородов в присутствии серы включает стадию каталитического окисления с использованием описанного выше катализатора.

Описание вариантов воплощения изобретения
Оксид титана или оксид молибдена или их смеси типично будут содержаться в количестве вплоть до примерно 15%, обычно вплоть до примерно 10% по массе катализатора. Обычно оксид будет находиться в виде мелких частиц и иметь большую площадь поверхности, например площадь поверхности примерно 80-200 м2/г.

В катализаторе изобретения оксид титана и/или молибдена может быть получен in situ, то есть в катализатор вводят металл, который превращается в оксидную форму в ходе получения или при активации катализатора, или он может быть добавлен в оксидный носитель в виде оксида.

Предпочтительным катализатором является катализатор, в котором оксидным носителем является оксид циркония, оксид церия или их смесь, который присутствует в катализаторе в количестве, по меньшей мере, 50% по массе катализатора. Когда носитель содержит смесь этих двух оксидов, оксид церия обычно будет составлять, по меньшей мере, 50% по массе смеси. Оксидный носитель также может представлять собой другие типы оксида, например оксид алюминия.

Обычно благородный металл будет представлять собой золото, платину, палладий, родий или серебро, причем золото является предпочтительным благородным металлом.

Концентрация благородного металла будет обычно низкой, то есть менее чем 2% по массе катализатора. Предпочтительно концентрация благородного металла составляет примерно 0,1-0,5% по массе катализатора.

Катализатор предпочтительно также содержит переходный металл в виде оксида. Оксид переходного металла предпочтительно имеет структуру шпинели. Примерами оксидов переходных металлов, которые образуют структуры шпинели, являются оксид кобальта (Co3O4) и оксид железа (3) (Fe3O4).

Когда благородным металлом является золото, предпочтительный катализатор также содержит оксид переходного металла, имеющий структуру шпинели, с которым связано золото, например, с образованием комплекса.

Оксидный носитель будет пористым и способным поглощать на своей поверхности возможно большее количество благородного металла оксида переходного металла. Оксидный носитель должен иметь возможно большую площадь поверхности, обычно 80-200 м2/г. Оксидный носитель может иметь любую подходящую форму, такую как монолит, экструдат, гранулы, кольца, крупинки или предпочтительно порошок.

Соотношение благородного металла к переходному металлу, если присутствует, в катализаторе может изменяться в широких пределах. Обычно атомное соотношение благородного металла к переходному металлу не будет превышать 1: 100.

Катализатор, когда он содержит как благородный металл, так и оксид переходного металла, может быть получен по способу, описанному в PCT/GB95/00136. Этот способ включает пропитку оксидного носителя раствором переходного металла, необязательно высушивание продукта; пропитанный продукт подвергают воздействию восстановительной атмосферы, такой как водород или оксид углерода при температуре, превышающей 300oC; обработанный таким образом продукт пропитывают раствором благородного металла и высушивают пропитанный продукт. Катализатор может быть активирован посредством нагревания его до температуры по меньшей мере 300oC, обычно 300-700oC, в присутствии кислорода. Кислород может представлять собой воздух или смесь кислорода с другим газом.

Далее изобретение будет проиллюстрировано следующими примерами. В каждом случае получали два образца, содержащие указанные составы. Сравнительные образцы получали аналогичным образом, но без указанных компонентов.

Пример 1
Катализатор получают, используя способ, описанный в целом в PCT/GB95/00136; он содержит 0,5% золота, 9,5% кобальта, 80% оксида циркония/оксида церия и 10% диоксида титана, все проценты являются массовыми. Кобальт находится в виде оксида кобальта, имеющего структуру шпинели, и золото находится в связанном состоянии, то есть образует комплекс с оксидом кобальта со структурой шпинели. При получении катализатора в него в качестве оксида добавляют диоксид титана.

Каталитические эффективности катализатора при окислении оксида углерода и углеводородов (HC) при различных температурах и полученные результаты представлены в таблице 1.

Условия испытаний - стационарное состояние, объемная скорость потока газа - 60000 ч-1; состав газа - 1% CO; 0,9% кислорода, 700 ppm (ч/млн) HC, 2% влаги, 15 ppm (ч/млн) диоксида серы, баланс - азот.

Благотворное влияние диоксида титана, присутствующего в каталитической композиции, наиболее заметно при пониженных температурах.

Пример 2
Катализатор получают, используя способ, описанный в целом в PCT/GB95/00136; он содержит 0,5% золота, 9,5% кобальта, 80% оксида циркония/оксида церия, 9,5% диоксида титана и 0,5% оксида молибдена, все проценты являются массовыми. Кобальт находится в виде оксида кобальта, имеющего структуру шпинели, и золото находится в связанном состоянии, то есть образует комплекс с оксидом кобальта со структурой шпинели. Добавляют диоксид титана в виде оксида в катализатор, тогда как оксид молибдена получают in situ.

Каталитические эффективности катализатора при каталитическом окислении оксида углерода и углеводородов (HC) испытывали и полученные результаты представлены в таблице 2.

Условия испытаний - стационарное состояние, объемная скорость подачи газа - 60000 ч-1; состав газа - 1% CO, 0,9% кислорода, 700 ppm (ч/млн) HC, 2% влаги, 15 ppm (ч/млн) диоксида серы, баланс - азот.

Вредное действие диоксида серы на катализатор в отсутствии TiO2/MoO3 наиболее заметно при пониженных температурах.

Похожие патенты RU2175573C2

название год авторы номер документа
КАТАЛИЗАТОР ДЛЯ ХОЛОДНОГО ПУСКА И ЕГО ПРИМЕНЕНИЕ В ВЫХЛОПНЫХ СИСТЕМАХ 2012
  • Чэнь Хай-Ин
  • Мулла Шадаб
RU2612136C2
КАТАЛИЗАТОР ДЛЯ ХОЛОДНОГО ЗАПУСКА И ЕГО ПРИМЕНЕНИЕ В ВЫХЛОПНЫХ СИСТЕМАХ 2014
  • Чэнь Хай-Ин
  • Раджарам Радж Рао
  • Лю Дунся
RU2692809C1
ЗОНИРОВАННЫЙ КАТАЛИЗАТОР РАЗЛОЖЕНИЯ АММИАКА ДЛЯ ПРИМЕНЕНИЯ В ГАЗОВЫХ ТУРБИНАХ 2016
  • Андерсен, Пол Джозеф
  • Доура, Кевин
RU2742183C1
КАТАЛИЗАТОР ОКИСЛЕНИЯ ДЛЯ ОБРАБОТКИ ВЫХЛОПНЫХ ГАЗОВ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2014
  • Бержеаль Давид
  • Чиффи Эндрю Фрэнсис
  • Гудвин Джон Бенджамин
  • Филлипс Пол Ричард
RU2688674C2
АДСОРБЕР-КАТАЛИЗАТОР NO 2017
  • Чендлер, Гай
  • Притцвальд-Стегманн, Джулиан
RU2759725C2
МЕДЬ- И МАРГАНЕЦСОДЕРЖАЩИЕ КАТАЛИЗАТОРЫ НА ОСНОВЕ НЕБЛАГОРОДНЫХ МЕТАЛЛОВ ДЛЯ ОКИСЛЕНИЯ МОНООКСИДА УГЛЕРОДА И ЛЕТУЧИХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ 2010
  • Чен Хаи-Йинг
  • Рейнинг Артур Дж.
  • Андерсен Пол Дж.
  • Айелло Рита
RU2532549C2
СПОСОБ УДАЛЕНИЯ ЗАГРЯЗНЯЮЩИХ ПРИМЕСЕЙ ИЗ ОТРАБОТАВШЕГО ГАЗА ДИЗЕЛЬНОГО ДВИГАТЕЛЯ 2009
  • Гекас Иоаннис
  • Йохансен Кельд
RU2517714C2
ТРЕХСЛОЙНЫЙ КАТАЛИЗАТОР-АДСОРБЕР NOx 2018
  • Чэндлер, Гай, Ричард
  • Филлипс, Пол, Ричард
  • Рид, Стюарт, Дэвид
  • Траскотт, Байрон
RU2756816C2
КАТАЛИЗАТОР ВЫХЛОПНОГО ГАЗА И СВЯЗУЮЩИЕ КАТАЛИЗАТОРА ДЛЯ НОСИТЕЛЕЙ ФИЛЬТРОВ 2017
  • Флэнэган, Кит
  • Марвелл, Дэвид
  • Грин, Александр
  • Филлипс, Пол
  • Чендлер, Гай
RU2775221C2
КАТАЛИЗАТОР ОКИСЛЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА И СИСТЕМА ВЫПУСКА ВЫХЛОПНЫХ ГАЗОВ 2015
  • Чиффи Эндрю Фрэнсис
  • Гудвин Джон
  • Лилэнд Джеймс
  • Моро Франсуа
RU2709543C2

Иллюстрации к изобретению RU 2 175 573 C2

Реферат патента 2001 года КАТАЛИЗАТОР ОКИСЛЕНИЯ

Изобретение касается катализатора для использования в каталитическом окислении оксида углерода и углеводородов. Катализатор содержит оксидный носитель, включающий оксид циркония, или оксид церия, или их смесь, не менее 50% по массе катализатора, включенные в него золото и оксид переходного металла, причем золото образует комплекс с оксидом переходного металла, оксид титана или смесь оксида титана с оксидом молибдена, в количестве 15% по массе катализатора. Оксиды углерода или углеводороды в присутствии серы окисляют на указанном катализаторе. Изобретение позволяет повысить каталитическую активность катализатора при окислении оксида углерода и углеводородов. 2 с. и 7 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 175 573 C2

1. Катализатор для использования в каталитическом окислении оксида углерода и углеводородов, содержащий оксидный носитель, включающий оксид циркония, оксид церия или их смеси, присутствующий в количестве, по меньшей мере, 50% по массе катализатора, имеющий включенные в нем золото и оксид переходного металла, причем золото образует комплекс с оксидом переходного металла, и оксид титана как таковой или в виде смеси с оксидом молибдена, такой как оксид, или смесь присутствует в количестве до 15% по массе катализатора. 2. Катализатор по п.1, в котором оксид титана или его смесь с оксидом молибдена присутствует в количестве до примерно 10% по массе катализатора. 3. Катализатор по любому из предыдущих пунктов, в котором оксидный носитель находится в виде мелких частиц. 4. Катализатор по любому из предыдущих пунктов, в котором площадь поверхности оксидного носителя составляет примерно 80 - 200 м2/г. 5. Катализатор по любому из предыдущих пунктов, в котором оксидный носитель содержит смесь оксида циркония и оксида церия, причем оксид церия составляет, по меньшей мере, 50% по массе смеси. 6. Катализатор по любому из предыдущих пунктов, в котором оксид переходного металла имеет структуру шпинели. 7. Катализатор по любому из предыдущих пунктов, в котором оксид переходного металла выбирают из оксида кобальта и оксида железа (3). 8. Способ окисления оксида углерода или углеводородов в присутствии соединения серы, включающий стадию каталитического окисления с использованием катализатора по пп.1 - 7. 9. Способ по п.8, в котором соединением серы является диоксид серы.

Документы, цитированные в отчете о поиске Патент 2001 года RU2175573C2

СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ГАПТЕНОВ 1991
  • Шильников Г.В.
  • Приев А.И.
  • Сарвазян А.П.
  • Дзантиев Б.Б.
RU2006038C1
Катализатор для очистки серусодержащих отходящих промышленных газов 1982
  • Тьерри Дюпен
SU1240343A3
Катализатор для глубокого окисления углеводородов и кислородсодержащих соединений отходящих газов промышленных производств 1987
  • Мясоедов Михаил Илларионович
  • Левин Вениамин Анатольевич
  • Комаровский Николай Александрович
  • Цайлингольд Анатолий Львович
  • Катюряева Галина Петровна
  • Шмулевич Эмиль Авраамович
  • Ененко Нина Ивановна
  • Меньшикова Татьяна Алексеевна
  • Гольберг Игорь Петрович
  • Грунин Генри Николаевич
  • Беспалов Владимир Павлович
  • Мельников Владимир Федорович
  • Кичигин Виктор Петрович
SU1466785A1
Способ очистки газов от окиси углерода в присутствии сернистого ангидрида (его варианты) 1981
  • Османов Магомед Османович
SU1088768A1
Катализатор для очистки выхлопных газов двигателей внутреннего сгорания и способ его получения 1980
  • Альфред Боцон
  • Эдгар Коберштайн
  • Ханс-Дитер Плетка
  • Херберт Фелькер
  • Эдуард Лакатос
SU1170958A3
КАТАЛИЗАТОР ДЛЯ ГЛУБОКОГО ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ 1992
  • Касымбекова Дария Азыкановна[Kz]
  • Гладун Галина Георгиевна[Kz]
  • Космамбетова Гульнара Радиевна[Kz]
  • Соколова Людмила Антоновна[Kz]
RU2043145C1
КАТАЛИЗАТОР ВОССТАНОВЛЕНИЯ ОКСИДОВ АЗОТА УГЛЕВОДОРОДАМИ В ОКИСЛИТЕЛЬНОЙ АТМОСФЕРЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1992
  • Иванова А.С.
  • Аликина Г.М.
  • Садыков В.А.
  • Лунин В.В.
  • Розовский А.Я.
  • Ходаков Ю.С.
RU2043146C1
КАТАЛИЗАТОР ДЛЯ ОКИСЛИТЕЛЬНОЙ ОЧИСТКИ ВЫХЛОПНЫХ ГАЗОВ ДИЗЕЛЬНЫХ МОТОРОВ 1990
  • Домесле Раинер[De]
  • Энглер Бернд[De]
  • Коберштайн Эдгар[At]
  • Фелькер Херберт[De]
RU2022643C1
Устройство для съема кирпичей с пресса и формирования садки 1978
  • Иванов Андрей Павлович
  • Кутьин Сергей Иванович
  • Парий Владимир Григорьевич
SU722767A1
Прибор для очистки паром от сажи дымогарных трубок в паровозных котлах 1913
  • Евстафьев Ф.Ф.
SU95A1

RU 2 175 573 C2

Авторы

Григорова Боджидара

Палазов Атанас

Меллор Джон

Джафин Энтони Гарольд

Даты

2001-11-10Публикация

1997-05-28Подача