ТРУБА ДЛЯ НЕФТЕ-, ГАЗО- И ПРОДУКТОПРОВОДОВ И СПОСОБ ЕЕ ПРОИЗВОДСТВА Российский патент 2005 года по МПК C21D9/08 C21D8/10 F16L9/02 C22C38/60 

Описание патента на изобретение RU2252972C1

Изобретение относится к области металлургии, в частности, к производству сварных труб для нефте-, газо- и продуктопроводов и других аналогичных конструкций (резервуары, сосуды давления), работающих в сложных геологических, климатических условиях и при наличии агрессивных коррозионных сред.

Известна труба и способ ее производства (патент РФ №2180691, С 21 D 9/08, опубл. 10.11.1999), включающий выплавку стали, обработку в ковше разливку, горячую прокатку на лист за несколько проходов с заданной степенью деформации, формовку и сварку. Сталь выплавляют на первородных или чистых шихтовых материалах, при следующем соотношении компонентов, мас.%:

углерод 0,03-0,11

марганец 0,90-1,80

кремний 0,06-0,60

хром 0,005-0,30

никель 0,005-0,30

ванадий 0,02-0,12

ниобий 0,03-0,10

титан 0,010-0,040

алюминий 0,010-0,055

кальций 0,001-0,005

сера 0,0005-0,008

фосфор 0,0005-0,010

азот 0,001-0,012

медь 0,005-0,25

сурьма 0,0001-0,005

олово 0,0001-0,007

мышьяк 0,0001-0,008

железо остальное,

при этом содержание углерода, азота, меди, фосфора, сурьмы, олова и мышьяка должны удовлетворять соотношениям:

С+10N<0,14

10P+Cu<0,14

2P+Sn+Sb+As<0,035

Горячая прокатка ведется с уменьшением степени деформации в каждом последующем проходе в 1,25-2,5 раза по отношению к предыдущему и при температуре, удовлетворяющей следующему соотношению:

Тн.пр.к.пр.<200,

где Тн.пр. и Тк.пр. - температуры начала и конца прокатки в проходе соответственно.

Отсутствие в описанном выше способе производства труб из горячекатаного листа регулируемого ускоренного охлаждения резко ограничивает возможности получения высокопрочных труб класса К60 и выше (особенно при толщинах листа больше 12 мм) без снижения таких важных характеристик как ударная вязкость при отрицательных температурах, пластичность, свариваемость, трещиностойкость и коррозионная стойкость. Это обусловлено тем, что компенсацией не предусмотренного изобретением ускоренного охлаждения для обеспечения требуемых прочностных характеристик на уровне 60 кг/мм2 и выше могут быть: снижение температуры конца прокатки до 700-750°С, повышение содержания углерода и марганца. И то, и другое, обеспечивая необходимую прочность, приводят к ухудшению вышеперечисленных характеристик, в первую очередь, к резкому снижению ударной вязкости, свариваемости и коррозионной стойкости.

Задачей данного изобретения является обеспечение сочетания необходимого уровня прочности (предел прочности выше 620 кг/мм2) с высокими характеристики пластичности и вязкости, трещиностойкости и коррозионной стойкости в трубах и других конструкциях, изготавливаемых из листа толщиной до 50 мм.

Технический результат достигается тем, что труба для нефтегазопроводов изготавливают из стали, выплавленной на первородных или чистых шихтовых материалах при следующем соотношении компонентов, мас.%:

углерод 0,02-0,11

марганец 0,10-1,80

кремний 0,06-0,60

хром 0,005-0,30

никель 0,005-1,0

ванадий 0,01-0,12

ниобий 0,02-0,10

титан 0,01-0,04

алюминий 0,01-0,05

кальций 0,0005-0,008

сера 0,0005-0,008

фосфор 0,001-0,012

азот 0,001-0,012

медь 0,005-0,25

сурьма 0,0001-0,005

олово 0,0001-0,007

мышьяк 0,0001-0,008

молибден 0,001-0,5

железо остальное,

при этом суммарное содержание никеля и марганца связано с концентрацией молибдена и фосфора следующим соотношением, мас.%:

Технический результат достигается также тем, что способ производства включает получение стали с составом, указанным выше, обработку в ковше, разливку, горячую прокатку, формовку и сварку трубы. При этом горячую прокатку ведут на реверсивном или непрерывном станах с последующим регулируемым ускоренным охлаждением, скорость которого, определяемая по выражению:

удовлетворяет следующему соотношению:

где Тк.пр. - температура поверхности листа или полосы в конце прокатки в интервале 750-850°С;

Тк.охл. - температура поверхности листа или полосы в конце регулируемого ускоренного охлаждения в интервале 500-700°С;

Vл. - скорость перемещения листа или полосы в душирующей или ламинарной установках, м/с;

Lд.у. - длина душирующей или ламинарной установок (может изменяться в пределах 10-100 метров), м.

Предложенные изобретения с соблюдением приведенных соотношений обеспечивают одновременное удовлетворение требований как по прочностным характеристикам (предел прочности выше) труб из листов толщиной до 50 мм и вязкости при отрицательных температурах, так и свариваемости, трещиностойкости и коррозионной стойкости.

В таблице 1 приведен химический состав материала (стали) предложенной и известной труб. Составы подбирались таким образом, чтобы оценить влияние молибдена и никеля на прочность при различных условиях охлаждения листов после прокатки. Плавки проводили в вакуумной индукционной печи. Завалка состояла из чистого армко-железа и в зависимости от варианта состава - никеля, ферромолибдена, меди и других шихтовых материалов. После достижения требуемого разрежения в печи начинали расплавление завалки. После полного расплавления и нагрева металла до температуры 1630-1650°С проводили дегазирующую выдержку, а затем вводили в ванну необходимые расчетные количества металлического марганца, феррованадия и феррониобия, а затем присаживали раскислители: ферросилиций, алюминий и ферротитан. После доведения температуры жидкой стали до требуемой (1560-1580°С) металл без нарушения вакуума сливали непосредственно из тигля в изложницу.

Всего в вакуумной индукционной печи было выплавлено 12 опытных плавок. Для всех плавок был проанализирован химический состав металла, и по его результатам отобрали три плавки, в которых соотношение, связывающее суммарное содержание никеля и марганца с концентрацией молибдена и фосфора, для плавок 1, 2, 3 равно 0,01; 0,0057 и 0,0064 соответственно, т.е. меньше 0,03.

Отобранные слитки, а также металл плавки стали известной трубы были прокованы на пластины толщиной 80-430 мм, затем прокатаны на реверсивном стане на толщину 50 и 20 мм и охлаждены со скоростями 10 и 20 градусов в секунду, а также на воздухе. Последнее условие охлаждения соответствует горячекатаному листу, а первые два - регулируемому ускоренному охлаждению. Полученные листы подвергли формовке и сварке с получением труб.

В таблице 2 приведены свойства этих плавок в сравнении с плавкой известного состава. Полученные результаты свидетельствуют, что новая сталь заявленного состава в сочетании с заявленной технологией прокатки, предусматривающей регулируемое охлаждение со скоростями не менее 4°С/с, обладает требуемым сочетанием высокого уровня прочности в сечениях до 50 мм с высокой вязкостью, а значит и трещиностойкостью, пластичностью при низких температурах. Скорость регулируемого охлаждения, равная 10 м/с, получена при прокатке на широкополосном стане: температура поверхности полосы в конце прокатки - 840°С, температура поверхности полосы в конце регулируемого ускоренного охлаждения - 640°С, длина ламинарной установки - 60 м, скорость перемещения полосы в ламинарной установке 3 м/с. Скорость регулируемого охлаждения, равная 20 м/с, получена при прокатке на реверсивном стане: температура поверхности листа в конце прокатки - 800°С, температура поверхности листа в конце регулируемого ускоренного охлаждения - 600°С, длина душирующей установки - 10 м, скорость перемещения листа в душирующей установке - 1 м/с. Скорость охлаждения листа на воздухе равна примерно 2-3°С/с. После охлаждения формуют из листа трубу и сваривают ее.

Таблица 1Химический состав сталиКомпонентСодержание, мас.% Плавка №1Плавка №2Плавка №3Плавка известной сталиУглерод0,020,040,090,06Марганец1,501,00,31,4Кремний0,10,180,250,25Хром0,050,280,20,15Никель0,50,10,90,1Ванадий0,10,050,010,07Ниобий0,0320,060,0870,06Титан0,010,0150,0350,015Алюминий0,0120,0210,0280,024Кальций0,00050,0030,0060,005Сера0,00350,0040,0080,003Фосфор0,0050,0070,0080,005Азот0,0050,0060,0070,007Медь0,230,10,010,15Сурьма0,00030,00090,0040,005Олово0,00050,0050,0070,005Мышьяк0,00020,0040,0080,006

Та6лица 2

Свойства сталиПлавкаТолщина листа, ммПредел прочности, Н/мм2Температура хрупко-вязкого перехода, °ССкорость охлаждения, °С/сСкорость охлаждения, °С/с2010воздух2010воздух120/50836/687780/730550/470-90/-80-80/-70-50/-40220/50807/712750/650540/460-90/-80-80/-70-50/-40320/50767/657720/630530/450-90/-80-80/-70-50/-40плавка известной стали20/50621/528500/410420/340-80/-30-50/-20-20/-10

Похожие патенты RU2252972C1

название год авторы номер документа
СТАЛЬ 2003
  • Дуб В.С.
  • Марков С.И.
  • Лобода А.С.
  • Головин С.В.
  • Дуб А.В.
  • Гошкадера С.В.
RU2241780C1
ТРУБА ДЛЯ НЕФТЕГАЗОПРОДУКТОПРОВОДОВ И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2000
  • Дуб В.С.
  • Лобода А.С.
  • Головин С.В.
  • Болотов А.С.
  • Тарлинский В.Д.
  • Дуб А.В.
  • Комаров А.И.
  • Чикалов С.Г.
  • Романцов И.А.
  • Роньжин А.И.
  • Ламухин А.М.
  • Марков С.И.
  • Дементьев А.В.
  • Тахаутдинов Р.С.
RU2180691C1
СВАРОЧНАЯ ПРОВОЛОКА 2004
  • Дуб В.С.
  • Марков С.И.
  • Лобода А.С.
  • Головин С.В.
  • Дуб А.В.
  • Рощин М.Б.
  • Гошкадера С.В.
RU2253556C1
Способ производства низколегированного рулонного проката 2022
  • Вархалева Татьяна Сергеевна
  • Измайлов Александр Михайлович
  • Бурштинский Максим Владимирович
  • Дубровский Сергей Владимирович
RU2793012C1
СТАЛЬ 1999
  • Дуб В.С.
  • Лобода А.С.
  • Марков С.И.
  • Онищенко А.К.
  • Головин С.В.
  • Болотов А.С.
  • Тарлинский В.Д.
  • Микулин Ю.И.
  • Кумылганов А.С.
  • Лобач В.П.
  • Ибрагимов М.Ш.
  • Ермаченков В.А.
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Суханов В.В.
  • Дуб А.В.
  • Дурынин В.А.
RU2141002C1
ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ (ВАРИАНТЫ) 2017
  • Голубева Марина Васильевна
  • Орлов Виктор Валерьевич
  • Сыч Ольга Васильевна
  • Хлусова Елена Игоревна
  • Яковлева Екатерина Александровна
  • Яшина Екатерина Александровна
  • Митрофанов Артем Викторович
  • Сычев Олег Николаевич
  • Городецкий Вячеслав Игоревич
RU2653748C1
ХЛАДОСТОЙКАЯ СТАЛЬ 2017
  • Марков Сергей Иванович
  • Дуб Владимир Семенович
  • Баликоев Алан Георгиевич
  • Орлов Виктор Валерьевич
  • Косырев Константин Львович
  • Лебедев Андрей Геннадьевич
  • Петин Михаил Михайлович
RU2648426C1
СТАЛЬ 2010
  • Дуб Владимир Семенович
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Юханов Вячеслав Алексеевич
  • Марков Сергей Иванович
  • Дурынин Виктор Алексеевич
  • Старченко Евгений Григорьевич
  • Рыжов Сергей Борисович
  • Трунов Николай Борисович
  • Зубченко Александр Степанович
RU2441939C1
СТАЛЬ 2010
  • Дуб Владимир Семенович
  • Дуб Алексей Владимирович
  • Юханов Вячеслав Алексеевич
  • Марков Сергей Иванович
  • Старченко Евгений Григорьевич
  • Дурынин Виктор Алексеевич
  • Шур Андрей Дмитриевич
  • Рыжов Сергей Борисович
  • Банюк Геннадий Федорович
  • Зубченко Александр Степанович
RU2441940C1
СТАЛЬ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ И ЭЛЕКТРОСВАРНЫЕ ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ 2009
  • Немтинов Александр Анатольевич
  • Голованов Александр Васильевич
  • Никонов Сергей Викторович
  • Филатов Николай Владимирович
  • Попов Евгений Сергеевич
  • Зайцев Александр Иванович
  • Родионова Ирина Гавриловна
  • Бакланова Ольга Николаевна
  • Ефимова Татьяна Михайловна
  • Меньшикова Галина Алексеевна
  • Марков Дмитрий Всеволодович
  • Головинов Валерий Александрович
  • Тропин Дмитрий Владимирович
  • Бегунов Илья Абидуллаевич
  • Лукманов Фаниль Эдвардович
RU2433198C2

Реферат патента 2005 года ТРУБА ДЛЯ НЕФТЕ-, ГАЗО- И ПРОДУКТОПРОВОДОВ И СПОСОБ ЕЕ ПРОИЗВОДСТВА

Изобретение относится к области металлургии, в частности к производству сварных труб для нефте-, газо- и продуктопроводов и других аналогичных конструкций (резервуары, сосуды давления), работающих в сложных геологических, климатических условиях и при наличии агрессивных коррозионных сред. Труба для нефте-, газо- и продуктопроводов изготовлена из стали, выплавленной на первородных или чистых шихтовых материалах, содержащей углерод, марганец, кремний, хром, никель, ванадий, ниобий, титан, алюминий, кальций, серу, фосфор, азот, медь, сурьму, олово, мышьяк и железо, а также дополнительно содержит молибден при следующем соотношении компонентов, мас.%: углерод 0,02-0,11, марганец 0,10-1,80, кремний 0,06-0,60, хром 0,005-0,30, никель 0,005-1,0, ванадий 0,01-0,12, ниобий 0,02-0,10, титан 0,01-0,04, алюминий 0,01-0,05, кальций 0,0005-0,008, сера 0,0005-0,008, фосфор 0,001-0,012, азот 0,001-0,012, медь 0,005-0,25, сурьма 0,0001-0,005, олово 0,0001-0,007, мышьяк 0,0001-0,008, молибден 0,001-0,5, железо - остальное, при этом суммарное содержание никеля и марганца связано с концентрацией молибдена и фосфора в мас.% следующим соотношением: [(Ni + Mn)/(1+Mo)]Р<0,03. Способ производства описанной трубы включает выплавку стали с указанным составом, обработку в ковше, разливку, горячую прокатку, формовку и сварку, горячую прокатку ведут на реверсивном или непрерывном станах с последующим регулируемым ускоренным охлаждением. 2 н.п. ф-лы, 2 табл.

Формула изобретения RU 2 252 972 C1

1. Труба для нефте-, газо- и продуктопроводов, изготовленная из стали, выплавленной на первородных или чистых шихтовых материалах, содержащей углерод, марганец, кремний, хром, никель, ванадий, ниобий, титан, алюминий, кальций, серу, фосфор, азот, медь, сурьму, олово, мышьяк и железо, отличающаяся тем, что она дополнительно содержит молибден при следующем соотношении компонентов, мас.%:

углерод 0,02-0,11

марганец 0,10-1,80

кремний 0,06-0,60

хром 0,005-0,30

никель 0,005-1,0

ванадий 0,01-0,12

ниобий 0,02-0,10

титан 0,01-0,04

алюминий 0,01-0,05

кальций 0,0005-0,008

сера 0,0005-0,008

фосфор 0,001-0,012

азот 0,001-0,012

медь 0,005-0,25

сурьма 0,0001-0,005

олово 0,0001-0,007

мышьяк 0,0001-0,008

молибден 0,001-0,5

железо остальное

при этом суммарное содержание никеля и марганца связано с концентрацией молибдена и фосфора следующим соотношением, мас.%:

2. Способ производства трубы для нефте-, газо- и продуктопроводов, включающий выплавку стали, обработку в ковше, разливку, горячую прокатку, формовку и сварку, отличающийся тем, что осуществляют выплавку стали с составом по п.1, горячую прокатку ведут на реверсивном или непрерывном станах с последующим регулируемым ускоренным охлаждением, скорость которого определяют по выражению:

удовлетворяет следующему соотношению:

где

Тк.пр. - температура поверхности листа или полосы в конце прокатки в интервале 750-850°С;

Тк.охл. - температура поверхности листа или полосы в конце регулируемого ускоренного охлаждения в интервале 500-700°С;

Vл. - скорость перемещения листа или полосы в душирующей или ламинарной установках, м/с;

Lд.у. - длина душирующей или ламинарной установок.

Документы, цитированные в отчете о поиске Патент 2005 года RU2252972C1

ТРУБА ДЛЯ НЕФТЕГАЗОПРОДУКТОПРОВОДОВ И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2000
  • Дуб В.С.
  • Лобода А.С.
  • Головин С.В.
  • Болотов А.С.
  • Тарлинский В.Д.
  • Дуб А.В.
  • Комаров А.И.
  • Чикалов С.Г.
  • Романцов И.А.
  • Роньжин А.И.
  • Ламухин А.М.
  • Марков С.И.
  • Дементьев А.В.
  • Тахаутдинов Р.С.
RU2180691C1
СПОСОБ ПРОИЗВОДСТВА УГЛЕРОДИСТОЙ ИЛИ НИЗКОЛЕГИРОВАННОЙ СТАЛИ ДЛЯ ЭЛЕКТРОСВАРНЫХ ТРУБ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ 2000
  • Столяров В.И.
  • Шлямнев А.П.
  • Родионова И.Г.
  • Бакланова О.Н.
  • Зайцев В.В.
  • Чумаков С.М.
  • Филатов М.В.
  • Зинченко С.Д.
  • Загорулько В.П.
  • Лятин А.Б.
  • Дзарахохов К.З.
  • Голованов А.В.
  • Масленников В.А.
  • Луканин Ю.В.
  • Рябинкова В.К.
  • Тишков В.Я.
  • Реформатская И.И.
  • Подобаев А.Н.
  • Флорианович Г.М.
RU2184155C2
СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ ИЗ МАЛОУГЛЕРОДИСТОЙ СТАЛИ 2001
  • Кузнецов В.Ю.
  • Фролочкин В.В.
  • Лубе И.И.
  • Супонин А.Г.
  • Печерица А.А.
  • Кузнецова Е.Я.
  • Неклюдов И.В.
  • Анищенко В.В.
RU2210604C2
ТРУБА ДЛЯ БУРЕНИЯ ИЛИ ОБСАДКИ НЕФТЕГАЗОВЫХ СКВАЖИН 2002
  • Полубабкин В.А.
  • Вяхирев В.И.
  • Глебов В.И.
  • Гноевых А.Н.
  • Ипполитов В.В.
  • Никитин Б.А.
  • Пасынков Б.И.
  • Скорняков В.И.
  • Тихонов Н.Т.
  • Трищенко В.И.
  • Фирсаев И.С.
  • Чертовиков В.М.
  • Штоль В.В.
  • Яичников Е.А.
RU2225560C2
SU 1112851 А, 20.05.1999.

RU 2 252 972 C1

Авторы

Дуб В.С.

Марков С.И.

Лобода А.С.

Головин С.В.

Болотов А.С.

Дуб А.В.

Рощин М.Б.

Гошкадера С.В.

Даты

2005-05-27Публикация

2004-06-07Подача