Область техники, к которой относится изобретение
Настоящее изобретение относится к высокопрочному альфа-бета сплаву, характеризующемуся улучшенным сочетанием прочности, обрабатываемости и баллистических свойств.
Предшествующий уровень техники
Сплавы на основе титана используются там, где требуются большие величины отношений прочности к весу наряду с повышенными термостойкостью и коррозийной стойкостью. Титановые сплавы можно подразделить на следующие группы: сплавы с альфа-фазой, сплавы с бета-фазой и альфа-бета сплавы. Альфа-бета сплавы содержат один или более альфа-стабилизирующий элемент и один или более бета-стабилизирующий элемент. Эти сплавы могут быть упрочнены с помощью термообработки или термомеханической обработки. В частности, сплавы могут быть упрочнены путем быстрого охлаждения от высокой температуры в альфа-бета области или от температуры выше температуры бета-превращения. После проведения этого процесса, известного как обработка на твердый раствор, следует обработка при средних температурах, называемая старением, в результате которой получают необходимую смесь, состоящую из альфа-фазы и бета-превращенной фазы - основных фаз в микроструктуре сплава.
Желательно использовать эти сплавы в тех случаях, когда необходимо обеспечить сочетание высокой прочности, хорошей обрабатываемости и хороших баллистических свойств.
В соответствии с этим задача настоящего изобретения заключается в обеспечении альфа-бета сплава, обладающего таким желательным сочетанием свойств.
Краткое изложение сущности изобретения
Предлагаемый альфа-бета сплав содержит
Al: от 4,5 до 5,5% (по массе)
V: от 3,0 до 5,0 мас.% (предпочтительно от 3,7 до 4,7 мас.%)
Мо: от 0,3 до 1,8 мас.%
Fe: от 0,2 до 0,8 мас.%
О: от 0,12 до 0,25 мас.% (предпочтительно от 0,15 до 0,22 мас.%)
Побочные элементы и примеси, содержание каждого из которых не превышает 0,1 мас.%, а общее их содержание составляет не более 0,5 мас.%
Остальное - титан
Сплавы в пределах границ композиции, соответствующей изобретению, содержат в качестве существенного элемента алюминий. Если содержание алюминия составляет менее 4,5 мас.%, то не будет обеспечена достаточная прочность. С другой стороны, если содержание алюминия превышает 5,5 мас.%, то будет плохой обрабатываемость.
Ванадий является существенным элементом как бета-стабилизатор в альфа-бета титановых сплавах согласно изобретению. Если ванадия в сплаве менее 3,0%, то не будет достигнута достаточная прочность. С другой стороны, если ванадия более чем 5,0%, в сплаве будет слишком высоким содержание бета-стабилизатора, что приводит к ухудшению обрабатываемости материала.
Железо присутствует как эффективный и менее дорогой бета-стабилизирующий элемент. Обычно приблизительно 0,1% железа обусловлено использованием при производстве титанового сплава, соответствующего данному изобретению, титановой губки и других оборотных материалов. В других случаях железо можно добавлять в виде стали или ферромолибденовой лигатуры, поскольку сплав согласно изобретению в качестве основного элемента содержит молибден. Предпочтительно верхний предел содержания железа составляет 0,8% Но если содержание железа превышает это значение, то это будет неблагоприятно влиять на обрабатываемость сплава.
Молибден является важным элементом для стабилизации бета-фазы, а также обеспечивает улучшение зернистости микроструктуры. Если молибдена менее 0,3%, желательный эффект его использования не будет достигнут. Если же содержание молибдена в сплаве превышает 1,8%, то ухудшится обрабатываемость сплава.
Кислород служит упрочняющим элементом для титана и его сплавов. В случае, если кислорода менее 0,12%, не будет обеспечена достаточная прочность, а содержание кислорода более 0,25% приведет к охрупчиванию и ухудшению обрабатываемости сплава.
Подробное описание и характерные примеры осуществления изобретения
Пример 1
Десять слитков-заготовок диаметром 203 мм из сплава Ti-6Al-4V были получены методом вакуумной дуговой переплавки в лабораторных условиях. Химический состав этих слитков представлен в таблице 1. В этой таблице сплавы А, В, С и Е относятся к сплавам, предлагаемым согласно изобретению. Сплавы D и от F до J являются исследуемыми контрольными сплавами (для сравнения). Сплав J, имеющий состав Ti-6Al-4V, представляет собой широко известный альфа-бета сплав. Изготовленные слитки были подвергнуты ковке и прокатке до получения прутков квадратного сечения (со стороной квадрата 19 мм) или толстых пластин толщиной 19 мм. Для исследования основных характеристик каждого из сплавов часть этих заготовок была подвергнута термической обработке для улучшения пластичности при температуре 704°С в течение 1 часа, после чего следовало охлаждение воздухом. Кроме того, для каждого из прутков квадратного сечения проводилась обработка на твердый раствор и старение (ОТРС) и затем определяли механические свойства для изучения способности сплавов к закаливанию.
В таблице 2 приведены свойства предложенных сплавов, определяемые при растяжении, после термической обработки по улучшению пластичности. Сплавы А, В, С и Е демонстрируют эквивалентную прочность (предел прочности при растяжении (ППР) или 0,2%ПТ) по отношению к сплаву Ti-6Al-4V. Пластичность (ОУ или УП) сплавов А, В, С и Е лучше, чем сплава Ti-6Al-4V. Таблица 3 отображает определяемые при растяжении свойства предложенных сплавов после ОТРС и сплава Ti-6Al-4V. Сплавы А, В и С демонстрируют высокую прочность (предел прочности при растяжении (ППР) или 0,2%ПТ) по сравнению с Ti-6Al-4V по меньшей мере на 70,4 МПа. Большая прочность сплавов после ОТРС обусловлена главным образом улучшенной способностью к упрочнению за счет добавки Мо и/или Fe. Однако, если содержание Мо и/или Fe слишком велико, то пластичность снижается, как это видно из данных для сплавов G, H и I.
УП - уменьшение площади сечения;
ППР - предел прочности при растяжении;
0,2% ПТ=условный предел текучести 0,2% (σ0,2 - прим. перевод).
(1 ksi (тысяча фунт-сила/кв.дюйм)=7,04 МПа (мегапаскаль) - прим. перевод.)
Пример 2
Пластины толщиной 19 мм, подвергнутые термообработке для улучшения пластичности, были механически обработаны до толщины 16 мм. На этих пластинах проводили испытания сверлением для оценки обрабатываемости сплавов. Для испытаний использовали высокоскоростные стальные сверла (ALSI M42). Испытания сверлением проводились при следующих условиях:
Диаметр сверла: 6,4 мм
Глубина отверстия: сквозное отверстие глубиной 16 мм
Скорость подачи сверла: 0,2 мм/оборот
Скорость вращения: 500 об/мин
Охладитель: водорастворимый охладитель
Срок эксплуатации сверла определялся по моменту, когда используемое сверло уже не могло просверлить какое-либо отверстие вследствие повреждения его режущей кромки. Результаты испытаний сверлением приведены ниже в таблице 4. Относительные показатели теста сверления, приведенные в таблице 4, представляют собой среднюю величину, полученную в результате 2-3 испытаний. Испытание сверлением завершали, когда относительный показатель теста становился приблизительно больше 4,0. Испытание сверлением показали, что сплавы, соответствующие изобретению, обладают значительно лучшей обрабатываемостью, чем сплав Ti-6Al-4V и другие сплавы, отличающиеся по химическому составу от сплава согласно данному изобретению. Худшая обрабатываемость сплава F обусловлена высоким содержанием кислорода.
Пример 3
Пластина толщиной приблизительно 11 мм была изготовлена путем обработки альфа-бета сплава в виде исходного слитка диаметром 203 мм, полученного в лабораторных условиях. Эта пластина была подвергнута термообработке для улучшения пластичности, после чего травлению. В качестве снаряда был использован фрагмент, имитирующий снаряд (ФИС) в 50 калибров. Для каждой пластины определялась величина V50, представляющая собой скорость пули, обеспечивающую вероятность полного внедрения, равную 50%, и эта скорость сравнивалась с установленной техническими требованиями. Результаты сравнения представлены в таблице 5. Величина ΔV50 в таблице показывает различие V50 между измеренной величиной и техническими требованиями. Следовательно, положительное число в таблице показывает превышение скорости относительно установленной техническими требованиями. Как показано в таблице, сплав К демонстрирует превосходные баллистические характеристики по сравнению со сплавом Ti-6Al-4V.
Другие воплощения настоящего изобретения будут понятны специалистам в данной области техники из анализа подробностей изложения и примеров осуществления данного изобретения, раскрытых в данном описании. Приведенные подробности и примеры следует рассматривать лишь как иллюстративные, при этом истинные объем и сущность данного изобретения раскрыты в нижеследующих пунктах формулы.
Изобретение относится к области металлургии, а именно к высокопрочным альфа-бета титановым сплавам. Предложены варианты альфа-бета сплавов на основе титана. Сплав содержит алюминий 4,5-5,5; ванадий 3,0-5,0; молибден 0,3-1,8; железо 0,2-0,8; кислород 0,12-0,25; побочные элементы и примеси, причем содержание каждого из них составляет менее 0,1, а в сумме их содержание - менее 0,5; титан остальное. Технический результат - получение альфа-бета сплава на основе титана, обладающего сочетанием высокой прочности, хорошей обрабатываемости и хороших баллистических свойств. 2 н. и 3 з.п. ф-лы, 5 табл.
УСТРОЙСТВО для ВЫЧИСЛЕНИЯ КОРНЕВЫХ ГОДОГРАФОВ СИСТЕМ АВТОМАТИЧЕСКОГО УНРАВЛЕНИЯ1Изобретение относится к автоматике и телемеханике и предназначено для исследования динамических свойств систем автоматического управления.Известны устройства для построения корневых годографов систем автоматического управления, содержащие вентили, группы вентилей, блоки памяти, схемы ИЛИ, схемы задержки, схему сравнения, сумматор, выходы которого соединены с первыми входами одноименных вентилей первой и второй групп, первый регистр, выходы которого соединены с первыми входами соответствующих вентилей третьей группы, второй регистр, выходы которого соединены с первыми входами одноименных вентилей четвертой и пятой групп, первый счетчик, выходы которого соединены с первыми входами одноименных вентилей ще- стой и седьмой групп, второй счетчик, выходы которого соединены с первыми входами одноименных вентилей восьмой и девятой групп, триггеры и генератор импульсов.Однако известные устройства имеют недостаточное быстродействие, невысокую точность работы и ограниченные функциональные возможности. | 0 |
|
SU408313A1 |
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами | 1921 |
|
SU10A1 |
RU 94036686 A1, 27.08.1996 | |||
СПЛАВ НА ОСНОВЕ ТИТАНА | 1997 |
|
RU2122040C1 |
Авторы
Даты
2006-05-27—Публикация
2003-04-30—Подача