Изобретение относится к средствам неразрушающего контроля и может быть использовано в контрольно-испытательном оборудовании для диагностики состояния колесных пар железнодорожного состава.
Известно устройство для ультразвуковой дефектоскопии колесных пар рельсового транспорта, содержащее неподвижное основание с опорами для испытываемой колесной пары, привод с фрикционным роликом, расположенный с возможностью взаимодействия с боковой поверхностью колеса испытываемой колесной пары, подъемно-поворотное устройство для подъема и поворота колесной пары, две иммерсионные ванны, размещенные по вертикальному уровню ниже оси вращения испытываемой колесной пары и ее опор, два сканирующих устройства с пьезоэлектрическими преобразователями, дефектоскоп ультразвуковой, многоканальный коммутатор пьезоэлектрических преобразователей, блок регистрации угла поворота колесной пары вокруг ее оси вращения, включающий в себя съемную метку начала угловой координаты, датчик регистрации начала координат и датчик регистрации угла поворота колесной пары, причем выходы блока регистрации угла поворота колесной пары вокруг ее оси вращения и ультразвукового дефектоскопа соединены с входом блока управления, который соединен с многоканальным коммутатором пьезоэлектрических преобразователей и вычислительно-запоминающим устройством (RU 2002123550, G 01 N 29/04, 27.03.04).
К недостаткам известного устройства для ультразвуковой дефектоскопии колесных пар рельсового транспорта следует отнести относительную сложность установки, обусловленную наличием двух иммерсионных ванн, недостаточно высокую достоверность ультразвукового неразрушающего контроля из-за использования пьезоэлектрических преобразователей и как следствие недостаточно объективная регистрация результатов контроля.
В качестве прототипа принята установка для ультразвуковой дефектоскопии колесных пар рельсового транспорта, содержащая устройство для подачи колесных пар, узел поворота, на котором установлен блок датчиков, выполненный с использованием пьезоэлектрических преобразователей, выходы которых через блок усилителей подключены к входу блока предварительной обработки информации, соединенного с вычислительным блоком и запоминающим устройством (Стенд для ультразвуковой дефектоскопии колесных пар AURA фирмы Reise & Touristik, Германия, 1999). В известной установке обеспечивается быстрая оценка состояния колесных пар, компьютерная визуализация результатов исследований с возможностью последующей оценки результатов испытаний на базе хранящихся в запоминающем устройстве изображений. Установка проста в обслуживании благодаря ориентированному на пользователя программному обеспечению, в ней предусмотрена возможность проведения работ по оценке состояния стенда с последующим документированием результатов.
Недостатком установки для ультразвуковой дефектоскопии колесных пар рельсового транспорта является необходимость тщательной подготовки контролируемых колесных пар (очистка от краски, грязи и т.д.) для правильной работы установки, что обуславливает значительные трудозатраты, а после завершения операции контроля необходима отмывка колес от масла, используемого в качестве контактной жидкости при контроле. Это в свою очередь накладывает дополнительные трудности в технологическом процессе контроля колесных пар. Используемая в установке схема прозвучивания и применение пьезоэлектрических преобразователей, для работы которых необходима контактная жидкость, не позволяют достичь высокой точности контроля при малых временных затратах на подготовку контролируемого изделия и сам процесс контроля. Кроме того, в установке для обеспечения необходимой проверки заданных областей колесной пары требуется относительно большое число ультразвуковых излучателей.
Технический результат заключается в обеспечении высокой точности и достоверности контроля колесных пар рельсового транспорта и снижении требований к качеству их очистки от возникших при эксплуатации загрязнений, необходимой при подготовке изделия к контролю.
Технический результат достигается тем, что в автоматизированной установке для дефектоскопии колесных пар вагонов содержащей устройство подачи колесных пар с механизмом их разворота, устройство очистки зоны контроля, устройство вращения колесных пар, средство диагностики, состоящее из вычислительного блока, блока предварительной обработки информации и блока усилителей, пульт управления и каретки для размещения ультразвуковых преобразователей, средство диагностики снабжено блоком генераторов, блоком синхронизации, оптическим датчиком метки и электромагнитно-акустическими преобразователями, выходы электромагнитно-акустических преобразователей через блок усилителей подключены к входу блока предварительной обработки информации, который соединен с вычислительным блоком, входы электромагнитно-акустических преобразователей подключены к соответствующим выходам блока генераторов, выход оптического датчика метки соединен с входом блока синхронизации, к выходу которого подключены входы синхронизации блока генераторов, блока предварительной обработки информации и пульта управления, который соединен с цепями управления устройства подачи колесных пар с механизмом их разворота, устройства очистки зоны контроля, устройства вращения колесных пар и каретки, при этом электромагнитно-акустические преобразователи установлены в каретках так, что по отношению к контролируемому изделию первый электромагнитно-акустический преобразователь, формирующий волны Релея, и второй приемный электромагнитно-акустический преобразователь расположены под углом к оси катания колеса, третий электромагнитно-акустический преобразователь, излучающий и принимающий сдвиговые волны, расположен над поверхностью обода колеса, четвертый и пятый электромагнитно-акустические преобразователи, излучающие и принимающие сдвиговые волны и выполненные с углом ввода ультразвуковых колебаний соответственно по нормали и 43°, расположены в зоне основного сечения обода, шестой, седьмой, восьмой и девятый электромагнитно-акустические преобразователи, формирующие и принимающие волны Релея, расположены в зоне диска колеса, десятый и одиннадцатый электромагнитно-акустические преобразователи, излучающие и принимающие сдвиговые волны, расположены в зоне ступицы колеса, двенадцатый и тринадцатый электромагнитно-акустические преобразователи, формирующие и принимающие волны Релея, расположены в средней части оси колесной пары, четырнадцатый и пятнадцатый электромагнитно-акустические преобразователи, выполненные с углом ввода ультразвуковых колебаний 43°, расположены в зоне подступичной части оси колесной пары, шестнадцатый и семнадцатый электромагнитно-акустические преобразователи с углом ввода ультразвуковых колебаний соответственно по нормали и 43° расположены в зоне шейки оси.
На чертеже представлена структурная схема автоматизированной установки для дефектоскопии колесных пар вагонов.
Автоматизированная установка для дефектоскопии колесных пар вагонов содержит устройство 1 подачи колесных пар с механизмом их разворота, устройство 2 очистки зоны контроля, устройство 3 вращения колесных пар, при этом цепи управления устройств 1, 2 и 3 и кареток 6 соединены с пультом 4 управления, средство 5 диагностики состоит из установленных в каретках 6 электромагнитно-акустических преобразователей 7, выходы которых через блок 8 усилителей подключены к входу блока 9 предварительной обработки информации, соединенного с вычислительным блоком 10, входы электромагнитно-акустических преобразователей 7 подключены к соответствующим выходам блока 11 генераторов, к выходу блока 12 синхронизации подключены входы синхронизации блока 11 генераторов, блока 9 предварительной обработки информации и пульта 4 управления, вход блока 12 синхронизации соединен с выходом оптического датчика 13 метки.
Автоматизированная установка для дефектоскопии колесных пар вагонов работает следующим образом.
Подача колесных пар на контроль может осуществляться в двух режимах - ручном и автоматическом. В автоматическом режиме управление осуществляется системой автоматики, а в ручном - оператором с пульта 4 управления. Перед осуществлением контроля устройство 2 очистки зоны контроля обеспечивает предварительную подготовку изделия к контролю. После чего каретки 6 перемещаются и электромагнитно-акустические преобразователи 7 устанавливаются в рабочее положение. Размещение электромагнитно-акустических преобразователей 7 в каретках 6 выполнено с учетом максимально возможного объема прозвучивания контролируемого изделия: первый электромагнитно-акустический преобразователь, формирующий волны Релея, и второй приемный электромагнитно-акустический преобразователь расположены под углом к оси катания колеса, третий электромагнитно-акустический преобразователь, излучающий и принимающий сдвиговые волны, расположен над поверхностью обода колеса, четвертый и пятый электромагнитно-акустические преобразователи, излучающие и принимающие сдвиговые волны и выполненные с углом ввода ультразвуковых колебаний соответственно по нормали и 43°, расположены в зоне основного сечения обода, шестой, седьмой, восьмой и девятый электромагнитно-акустические преобразователи, формирующие и принимающие волны Релея, расположены в зоне диска колеса, десятый и одиннадцатый электромагнитно-акустические преобразователи, излучающие и принимающие сдвиговые волны, расположены в зоне ступицы колеса, двенадцатый и тринадцатый электромагнитно-акустические преобразователи, формирующие и принимающие волны Релея, расположены в средней части оси колесной пары, четырнадцатый и пятнадцатый электромагнитно-акустические преобразователи, выполненные с углом ввода ультразвуковых колебаний 43°, расположены в зоне подступичной части оси колесной пары, шестнадцатый и семнадцатый электромагнитно-акустические преобразователи с углом ввода ультразвуковых колебаний соответственно по нормали и 43° расположены в зоне шейки оси. Электрические сигналы, вырабатываемые блоком 11 генераторов, подаются на электромагнитно-акустические преобразователи 7, каждый из которых возбуждает в заданной зоне контролируемого изделия ультразвуковые колебания. Отраженные ультразвуковые сигналы принимаются приемными электромагнитно-акустическими преобразователями 7, где преобразовываются в электрический сигнал. Преобразованный сигнал после усиления в блоке 8 усилителей поступает в блок 9 предварительной обработки информации, где он обрабатывается и преобразуется к виду, удобному для дальнейшей обработки в вычислительном блоке 10. Блок 12 синхронизации синхронизирует работу генераторов в блоке 11, блока 9 предварительной обработки информации, с выхода которого предварительно обработанная информация и синхроимпульсы передаются в вычислительный блок 10. Кроме того, импульс синхронизации поступает в пульт 4 управления. Запуск блока 12 синхронизации осуществляется по сигналу с выхода оптического датчика 13, фиксирующего начало отсчета координаты, которое определяется по метке, нанесенной на одну из сторон обода колеса. Контроль поверхности катания осуществляется первым и вторым электромагнитно-акустическими преобразователями. Глубина выявления дефектов может достигать 10 мм. Контроль обода колеса обеспечивается третьим электромагнитно-акустическим преобразователем, который позволяет выявить все несплошности, расположенные перпендикулярно направлению распространения волны. Четвертым и пятым электромагнитно-акустическими преобразователями выявляются продольные расслоения обода и трещины на боковых поверхностях обода. Контроль диска колеса (включая приободную зону) производится шестым, седьмым, восьмым и девятым электромагнитно-акустическими преобразователями, которые позволяют выявить трещины, расположенные перпендикулярно направлению распространения волны. Контроль ступицы колеса производится десятым и одиннадцатым электромагнитно-акустическими преобразователями, которые позволяют выявить дефекты, расположенные перпендикулярно распространению волны. Контроль оси осуществляется двенадцатым, тринадцатым, четырнадцатым, пятнадцатым, шестнадцатым и семнадцатым электромагнитно-акустическими преобразователями. При этом средняя часть оси контролируется двенадцатым и тринадцатым электромагнитно-акустическими преобразователями, внешняя подступичная часть оси контролируется четырнадцатым и пятнадцатым электромагнитно-акустическими преобразователями, а шейка оси контролируется шестнадцатым и семнадцатым электромагнитно-акустическими преобразователями. Обработанная в вычислительном блоке 10 информация записывается в память этого блока, что позволяет сохранить информацию для ее дальнейшего использования.
При эхо и теневом методах контроля с одной поверхности обода, диска колеса и оси колесной пары используются волны Релея и Лэмба, формируемые электромагнитно-акустическими преобразователями.
Предлагаемая автоматизированная установка в процессе контроля осей позволяет выявить следующие дефекты: поперечные трещины на цилиндрических поверхностях шеек, поперечные поверхностные трещины в галтелях шеек, поперечные поверхностные трещины в средней части, внутренние дефекты металлургического происхождения. В процессе контроля цельнокатаных колес подлежат выявлению следующие дефекты: поверхностные поперечные и продольные трещины, расслоения, поверхностный откол у наружной грани обода, откол кругового наплыва, поверхностные поперечные трещины, а также внутренние трещины, нарушения сплошности и неметаллические включения в наплавленном слое гребня, усталостные поверхностные трещины в зоне галтельного перехода диска в обод, неметаллические включения и внутренние сплошности металла в ободе колеса.
Использование: для дефектоскопии колесных пар вагонов. Сущность: заключается в том, что автоматизированная установка для дефектоскопии колесных пар вагонов содержит устройство подачи колесных пар с механизмом их разворота, устройство очистки зоны контроля, устройство вращения колесных пар, при этом цепи управления устройств и кареток соединены с пультом управления, средство диагностики состоит из установленных в каретках электромагнитно-акустических преобразователей, выходы которых через блок усилителей подключены к входу блока предварительной обработки информации, соединенного с вычислительным блоком, входы электромагнитно-акустических преобразователей подключены к соответствующим выходам блока генераторов, к выходу блока синхронизации подключены входы синхронизации блока генераторов, блока предварительной обработки информации и пульта управления, вход блока синхронизации соединен с выходом оптического датчика метки. Установленные в каретках электромагнитно-акустические преобразователи расположены с учетом максимально возможного объема прозвучивания контролируемого изделия. Технический результат: обеспечение высокой точности и достоверности контроля колесных пар рельсового транспорта и снижение требований к качеству их очистки от возникших при эксплуатации загрязнений, необходимой при подготовке изделия к контролю. 1 ил.
Автоматизированная установка для дефектоскопии колесных пар вагонов, содержащая устройство подачи колесных пар с механизмом их разворота, устройство очистки зоны контроля, устройство вращения колесных пар, средство диагностики, состоящее из вычислительного блока, блока предварительной обработки информации и блока усилителей, пульт управления и каретки для размещения ультразвуковых преобразователей, отличающаяся тем, что средство диагностики снабжено блоком генераторов, блоком синхронизации, оптическим датчиком метки и электромагнитно-акустическими преобразователями, выходы электромагнитно-акустических преобразователей через блок усилителей подключены к входу блока предварительной обработки информации, который соединен с вычислительным блоком, входы электромагнитно-акустических преобразователей подключены к соответствующим выходам блока генераторов, выход оптического датчика метки соединен с входом блока синхронизации, к выходу которого подключены входы синхронизации блока генераторов, блока предварительной обработки информации и пульта управления, который соединен с цепями управления устройства подачи колесных пар с механизмом их разворота, устройства очистки зоны контроля, устройства вращения колесных пар и кареток, при этом электромагнитно-акустические преобразователи установлены в каретках так, что по отношению к контролируемому изделию первый электромагнитно-акустический преобразователь, формирующий волны Релея, и второй приемный электромагнитно-акустический преобразователь расположены под углом к оси катания колеса, третий электромагнитно-акустический преобразователь, излучающий и принимающий сдвиговые волны, расположен над поверхностью обода колеса, четвертый и пятый электромагнитно-акустические преобразователи, излучающие и принимающие сдвиговые волны и выполненные с углом ввода ультразвуковых колебаний соответственно по нормали и 43°, расположены в зоне основного сечения обода, шестой, седьмой, восьмой и девятый электромагнитно-акустические преобразователи, формирующие и принимающие волны Релея, расположены в зоне диска колеса, десятый и одиннадцатый электромагнитно-акустические преобразователи, излучающие и принимающие сдвиговые волны, расположены в зоне ступицы колеса, двенадцатый и тринадцатый электромагнитно-акустические преобразователи, формирующие и принимающие волны Релея, расположены в средней части оси колесной пары, четырнадцатый и пятнадцатый электромагнитно-акустические преобразователи, выполненные с углом ввода ультразвуковых колебаний 43°, расположены в зоне подступичной части оси колесной пары, шестнадцатый и семнадцатый электромагнитно-акустические преобразователи с углом ввода ультразвуковых колебаний соответственно по нормали и 43° расположены в зоне шейки оси.
СПОСОБ ЭХО-ИМПУЛЬСПОГО УЛЬТРАЗВУКОВОГО КОНТРОЛЯИЗДЕЛИЙ | 0 |
|
SU165000A1 |
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ИЗДЕЛИЙ, ИМЕЮЩИХ СЛОЖНУЮ ФОРМУ ТЕЛ ВРАЩЕНИЯ | 1993 |
|
RU2086975C1 |
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ИЗДЕЛИЙ, ИМЕЮЩИХ СЛОЖНУЮ ФОРМУ ТЕЛ ВРАЩЕНИЯ С НАЛИЧИЕМ НАПРЕССОВАННЫХ ДЕТАЛЕЙ | 1993 |
|
RU2084889C1 |
СТЕНД ДЛЯ УЛЬТРАЗВУКОВЫХ ИСПЫТАНИЙ КОЛЕСНЫХ ПАР РЕЛЬСОВОГО ПОДВИЖНОГО СОСТАВА | 2001 |
|
RU2243532C2 |
Стенд для испытаний колесных пар рельсового подвижного состава | 1981 |
|
SU989352A1 |
УСТРОЙСТВО ДЛЯ ОЧИСТКИ КОЛЕСНОЙ ПАРЫ ВАГОНА | 2001 |
|
RU2216466C2 |
СПОСОБ АВТОМАТИЧЕСКОГО ВЫЯВЛЕНИЯ ДЕФЕКТОВБЧБЯИОТЕН | 0 |
|
SU310834A1 |
WO 9013814 A1, 15.11.1990 | |||
Устройство для выпуска сжиженного газа из резервуаров низкого давления | 1983 |
|
SU1153168A2 |
Сегнетоэлектрический керамический материал | 1977 |
|
SU667526A1 |
Авторы
Даты
2006-12-10—Публикация
2005-06-07—Подача