Область техники
Настоящее изобретение относится к стальному материалу, подходящему для использования в суровой коррозионной среде, содержащей вызывающие коррозию вещества, такие как газообразный диоксид углерода, сероводород, ионы хлора и тому подобное. Конкретно, настоящее изобретение относится к стальному материалу для бесшовной стальной трубы, а также сварной стальной трубы, сваренной методом сопротивления, лазерной сваркой, спиральной сваркой и тому подобное, используемой в оборудовании для добычи нефти или природного газа, оборудовании для удаления газообразного сероводорода или для геотермального получения энергии, либо при изготовлении бака для жидкости, содержащей жидкий диоксид углерода, особенно к стальному материалу для труб, предназначенных для нефтяных или газовых скважин.
Уровень техники
С точки зрения истощения нефтяных ресурсов, ожидаемого в близком будущем, часто осуществляют разработку нефтяных скважин в суровой среде, то есть нефтяных пластов глубокого залегания, высокосернистых газовых месторождений и так далее. Таким образом, стальные трубы для нефтяных скважин, предназначенные для использования в подобных условиях, должны иметь высокую прочность, превосходную коррозионную стойкость и сопротивление коррозионному растрескиванию, вызванному сероводородным воздействием.
В качестве стального материала для труб, предназначенных для нефтяных скважин и подобного применения, обычно используют углеродистую сталь или низколегированную сталь. Однако по мере того как среда в скважине становится все более суровой, используют сталь, содержащую повышенное количество легирующих элементов. Например, в качестве стального материала для нефтяных скважин, содержащих большое количество газообразного диоксида углерода, используют мартенситную нержавеющую сталь серии 13 Cr, такую как обычная сталь SUS 420 и подобная.
Однако несмотря на то, что сталь SUS 420 имеет превосходную коррозионную стойкость по отношению к газообразному диоксиду углерода, она имеет низкую коррозионную стойкость по отношению к сероводороду. Так, сталь SUS 420 подвержена коррозионному растрескиванию, вызванному сероводородным воздействием (SSCC), в среде, одновременно содержащей газообразный диоксид углерода и сероводород. Поэтому вместо стали SUS 420 предлагалось использовать различные стальные материалы.
В Японском патенте №2861024, публикации заявки на японский патент №05-287455 и публикации заявки на японский патент №07-62499 описана сталь, имеющая улучшенную коррозионную стойкость и полученная снижением содержания углерода в стали SUS 420. Однако такая сталь с низким содержанием углерода, описанная в упомянутых публикациях, может не обладать достаточной прочностью, необходимой для использования в глубокой скважине, условный предел текучести которой составляет 860 МПа или более.
Альтернативно, в публикации заявки на японский патент №2000-192196 описана сталь, имеющая мартенситную однофазную структуру, содержащую кобальт в количестве 0,5-7 мас. % и молибден 3,1-7 мас. %, обладающая высокой прочностью и превосходным сопротивлением коррозионному растрескиванию, вызванному сероводородным воздействием. Изобретение, описанное в данной публикации, представляет собой сталь, содержащую кобальт в вышеупомянутом интервале для подавления образования остаточного аустенита во время охлаждения для получения однофазной мартенситной структуры. Однако поскольку кобальт представляет собой дорогостоящий элемент, его использование нежелательно.
Сущность изобретения
Настоящее изобретение разработано с учетом вышеупомянутых обстоятельств. Целью настоящего изобретения является разработка мартенситной нержавеющей стали, обладающей достаточной прочностью для того, чтобы быть использованной в трубах, предназначенных для глубоких скважин и имеющих высокую прочность при условном пределе текучести 860 МПа или более, а также превосходную коррозионную стойкость к газообразному диоксиду углерода и сопротивление коррозионному растрескиванию, вызванному сероводородным воздействием, благодаря чему она может быть использована даже в среде, содержащей газообразный диоксид углерода, сероводород или ионы хлора либо два или более из упомянутых соединений. Символы соответствующих элементов в следующем описании показывают содержание (мас.%) каждого элемента.
Соответственно, предметом настоящего изобретения является высокопрочная мартенситная нержавеющая сталь, описанная в следующих разделах (а) и (b).
(а) Высокопрочная мартенситная нержавеющая сталь, обладающая превосходной коррозионной стойкостью к газообразному диоксиду углерода и сопротивлением коррозионному растрескиванию, вызванному сероводородным воздействием, и имеющая 0,2% условный предел текучести 860 МПа или более, характеризуется тем, что содержит следующие элементы в мас.%: С: 0,005-0,04%, Si: 0,5% или менее, Mn: 0,1-3,0%, P: 0,04% или менее, S: 0,01% или менее, Cr: 10-15%, Ni: 4,0-8%, Mo: 2,8-5,0%, Al: 0,001-0,10% и N: 0,07% или менее, при этом остаток составляет Fe и неизбежные примеси, а также характеризующаяся тем, что указанная сталь удовлетворяет приведенному ниже выражению (1), а ее микроструктура в основном состоит из отпущенного мартенсита, выделившихся во время отпуска карбидов и интерметаллических соединений, таких как фазы Лавеса, σ фаза и подобные им мелкозернистые осадки, выпавшие во время отпуска, при этом
Mo≥2,3-0,89 Si+32,2 C (1)
где символы соответствующих элементов в выражении (1) показывают содержание каждого элемента в мас.%.
Кроме того, предметом настоящего изобретения является мартенситная нержавеющая сталь, содержащая по меньшей мере один из легирующих элементов, выбранный из по меньшей мере одной группы, включающей представленную ниже первую группу, вторую группу и третью группу, помимо компонентов, описанных в вышеприведенной группе (а). В упомянутой стали указанное выражение (1) также соблюдается, а микроструктура подобна описанной выше микроструктуре.
Первая группа включает элементы Ti: 0,005-0,25%, V: 0,005-0,25%, Nb: 0,005-0,25% и Zr: 0,005-0,25%.
Вторая группа - Cu: 0,05-1%.
Третья группа - Са: 0,0002-0,005%, Mg: 0,0002-0,005%, La: 0,0002-0,005% и Се: 0,0002-0,005%.
(b) Высокопрочная мартенситная нержавеющая сталь, обладающая превосходной коррозионной стойкостью к газообразному диоксиду углерода и сопротивлением коррозионному растрескиванию, вызванному сероводородным воздействием, и имеющая 0,2% условный предел текучести 860 МПа или более, характеризуется тем, что указанная сталь включает композиции, представленные в любой подгруппе группы (а), а также тем, что сталь, удовлетворяющую вышеприведенному выражению (1), подвергают отпуску, при условии (20+log t)·(T+273) равно 13500-17700, при этом после закалки стали при температуре закалки 880-1000°С интервал температуры отпуска устанавливают на уровне 450-620°С, где температура отпуска обозначена как Т (°С), а время отпуска как t (час), при этом микроструктура указанной стали в основном состоит из отпущенного мартенсита, выпавших во время отпуска карбидов и интерметаллических соединений, таких как фаза Лавеса, σ фаза и подобные им мелкозернистые фазы, выпавшие во время отпуска.
Краткое описание чертежей
На Фиг.1 представлено изображение, показывающее взаимосвязь между содержанием молибдена (Мо) в различных видах стали, подвергаемой испытаниям в примерах, и правой стороной выражения (1), то есть «2,3-0,89 Si+32,2 C» (величина IM).
На Фиг.2 представлено изображение, характеризующее условия отпуска, описываемые в изобретении, то есть связь между 0,2% условным пределом текучести, получаемым в результате изменения величин (20+log t)(T+273) при изменении температур отпуска в интервале 400-650°С после закалки стали при 920°С, и (20+log t)(T+273).
Описание предпочтительных вариантов осуществления изобретения
Причины ограничения содержания различных элементов авторами настоящего изобретения представлены ниже. «%» всегда означает мас. %
С: 0,005-0,04%
Несмотря на то, что С (углерод) является эффективным легирующим элементом, повышающим прочность стали, с точки зрения коррозионной стойкости предпочтительным является невысокое содержание С. Однако, если содержание С составляет менее 0,005%, условный предел текучести не достигает 860 МПа и более. Таким образом, нижний предел содержания С установлен на уровне 0,005%. С другой стороны, если содержание С превышает 0,04%, то твердость отпущенной стали становится слишком высокой и сталь становится слишком уязвимой для коррозионного растрескивания, вызываемого сероводородным воздействием. Соответственно, содержание С установлено на уровне 0,005-0,04%.
Si: 0,5% или менее
Si (Кремний) представляет собой легирующий элемент, вводимый в качестве раскислителя. Количество Si может соответствовать содержанию в качестве неизбежной примеси. Однако для получения сильного раскисляющего действия предпочтительно, чтобы содержание Si составляло 0,01% или более. С другой стороны, если содержание Si превышает 0,5%, пластичность стали понижается и обрабатываемость стали также понижается. Соответственно, содержание Si установлено на уровне 0,5% или ниже.
Mn: 0,1-3,0%
Mn (Марганец) представляет собой эффективный легирующий элемент, улучшающий горячую обрабатываемость. Для получения данного эффекта необходимо содержание Mn 0,1% или более. С другой стороны, если содержание Mn превышает 3,0%, происходит насыщение, что приводит к повышению стоимости. Соответственно, содержание Mn установлено на уровне 0,1-3,0%.
Р: 0,04% или менее
Р (Фосфор) представляет собой содержащийся в стали загрязняющий элемент, и, предпочтительно, его содержание является как можно более низким. В частности, если содержание Р превышает 0,04%, то сопротивление коррозионному растрескиванию, вызванному сероводородным воздействием, существенно снижается. Соответственно, содержание Р установлено на уровне 0,04% или менее.
S: 0,01% или менее
S (Сера) представляет собой содержащийся в стали загрязняющий элемент, и, предпочтительно, ее содержание является как можно более низким. В частности, если содержание S превышает 0,01%, то горячая обрабатываемость, коррозионная стойкость и пластичность существенно снижаются. Соответственно, содержание S установлено на уровне 0,01% или менее.
Cr: 10-15%
Cr (Хром) представляет собой эффективный легирующий элемент, повышающий коррозионную стойкость к газообразному диоксиду углерода. Для получения эффекта необходимо содержание Cr 10% или более. С другой стороны, если содержание Cr превышает 15%, затрудняется поддержание в отпущенной стали микроструктуры мартенсита. Соответственно, содержание Cr установлено на уровне 10-15%.
Ni: 4,0-8%
Ni (Никель) представляет собой легирующий элемент, необходимый для образования в отпущенной стали структуры мартенсита. Однако, если содержание Ni составляет 4,0% или менее, то ряд ферритных фаз выделяется при отпуске стали, поэтому упомянутая структура не превращается в по существу мартенситную. С другой стороны, если содержание Ni превышает 8%, то микроструктура отпущенной стали превращается в аустенитную. Соответственно, содержание Ni установлено на уровне 4,0-8%. Более предпочтительно, содержание на уровне 4-7%.
Мо: 2,8-5,0%
Мо (Молибден) представляет собой эффективный легирующий элемент, усиливающий сопротивление растрескиванию, вызванному сероводородным воздействием у высокопрочного материала. Для достижения такого эффекта содержание Мо должно составлять 2,8% или более. Однако, если содержание Мо превышает 5,0%, происходит эффект насыщения, что приводит к повышению стоимости. Соответственно, содержание Мо установлено на уровне 2,8-5,0%.
Al: 0,001-0,10%
Al (алюминий) представляет собой легирующий элемент, используемый в качестве раскислителя при выплавке. Для достижения эффекта содержание Al должно составлять 0,001% или более. Однако, если содержание Al превышает 0,10%, в стали образуется множество включений и ее коррозионная стойкость снижается. Соответственно, содержание Al установлено на уровне 0,001-0,10%.
N: 0,07% или менее
N (азот) представляет собой содержащийся в стали загрязняющий элемент, и его содержание должно быть как можно более низким. В частности, если содержание N превышает 0,07%, образуется множество включений, поэтому коррозионная стойкость снижается. Соответственно, содержание N установлено на уровне 0,07% или менее.
Один из видов мартенситной нержавеющей стали в соответствии с настоящим изобретением имеет вышеупомянутый химический состав, а также остаток в виде Fe (железа) и неизбежных примесей. Другой вид мартенситной нержавеющей стали в соответствии с настоящим изобретением, помимо вышеупомянутых компонентов, дополнительно содержит по меньшей мере один легирующий элемент, выбранный из по меньшей мере одной группы, включающей первую группу, вторую группу и третью группу. Компоненты соответствующих групп описаны ниже.
Первая группа (Ti, V, Nb, Zr: 0,005-0,25% соответственно)
Поскольку Ti, V, Nb и Zr обладают способностью фиксировать С, снижая таким образом колебания прочности, в состав может быть при необходимости включен один или более из указанных элементов. Однако, если содержание любого из этих элементов составляет менее 0,005%, вышеупомянутый эффект не достигается. С другой стороны, если содержание любого из элементов превышает 0,25%, то микроструктура стали не может превратиться в по существу в мартенситную, поэтому высокая прочность стали с условным пределом текучести 860 МПа или более не может быть достигнута. Соответственно, соответствующее количество этих элементов установлено на уровне 0,005-0,25%.
Вторая группа (Cu: 0,05-1%)
Cu подобно Ni представляет собой эффективный элемент для превращения микроструктуры отпущенной стали в основном в мартенситную. Чтобы обеспечить эффект при добавлении Cu, содержание может составлять 0,05% или более. Однако, если содержание Cu превышает 1%, то горячая обрабатываемость стали снижается. Соответственно, при включении в сталь, содержание Cu установлено на уровне 0,05-1%.
Третья группа (Са, Mg, La, Ce: 0,0002-0,005% соответственно)
Поскольку Са, Mg, La и Се являются эффективными элементами для повышения горячей обрабатываемости стали, в состав может быть при необходимости включен один или более из указанных элементов. Однако, если содержание любого из этих элементов составляет менее 0,0002%, то вышеупомянутый эффект не достигается. С другой стороны, если содержание любого из элементов превышает 0,005%, в стали образуется грубый оксид, при этом ее коррозионная стойкость снижается. Соответственно, количество этих элементов установлено на уровне 0,0002-0,005%. Предпочтительно добавление в сталь Са и/или La.
Сталь в соответствии с настоящим изобретением должна иметь вышеупомянутый химический состав и удовлетворять выражению (1). Это объясняется тем, что если сталь удовлетворяет выражению (1), то ее прочность может быть повышена до 860 МПа или выше без ухудшения уровня сопротивления коррозионному растрескиванию, вызванному сероводородным воздействием.
Mo≥2,3-0,89 Si+32,2 C (1)
где символы соответствующих элементов в выражении (1) показывают содержание (мас. %) каждого элемента.
На Фиг.1 представлено изображение, показывающее взаимосвязь между содержанием Мо в различных видах стали, подвергнутой испытаниям в описываемых ниже примерах, и правой стороной выражения (1), т.е. «2,3-0,89 Si+32,2 C» (величина IM). Конкретно, данные, представленные на Фиг.1, получены в результате испытания сталей в соответствии с настоящим изобретением и сравнительных сталей (испытания №18-21). Знак «○» показывает пример, в котором в результате испытания на растрескивание под воздействием сероводорода разрушения не происходит, а знак «х» показывает пример, в образце которого происходит разрушение. Даже если содержание Мо превышает 2,8% в том случае, когда содержание Мо не удовлетворяет выражению (1), сталь имеет низкое сопротивление коррозионному растрескиванию, вызванному сероводородным воздействием.
Если содержание Мо выходит за пределы (т.е. менее 860 МПа), указанные в настоящем изобретении, то 0,2% условный предел текучести стали составляет менее 860 МПа. Кроме того, когда содержание Мо находится в пределах (т.е. 2,8-5%), указанных в настоящем изобретении, то если содержание Мо не удовлетворяет вышеупомянутому выражению (1), 0,2% условный предел текучести стали составляет менее 860 МПа.
Однако, если сталь удовлетворяет вышеупомянутому выражению (1), 0,2% условный предел текучести стали достигает 860 МПа или более, она может быть использована в качестве стального материала для нефтяных скважин благодаря достаточной прочности. Соответственно, состав стали в соответствии с настоящим изобретением должен быть в пределах указанного химического состава и удовлетворять вышеупомянутому выражению (1).
Кроме того, авторы настоящего изобретения проверили влияние микроструктуры. В результате было установлено, что если микроструктура представляет собой структуру, в основном содержащую отпущенный мартенсит, выделившиеся во время отпуска карбиды и интерметаллические соединения, такие как фаза Лавеса, σ фаза и подобные им мелкозернистые фазы, выделившиеся во время отпуска, прочность стали может быть улучшена без ухудшения сопротивления коррозионному растрескиванию, вызванному сероводородным воздействием.
Следует отметить, что фраза «в основном содержащая отпущенный мартенсит» означает, что 70 об. % или более микроструктуры стали представляют собой мартенситную структуру, при этом также может присутствовать оставшаяся аустенитная структура и/или ферритная структура, отличная от отпущенной мартенситной структуры.
Кроме того, фраза «интерметаллические соединения, такие как фаза Лавеса, σ фаза и т.п.» означает интерметаллические соединения, такие как μ фаза и Χ фаза, отличные от фазы Лавеса, такой как Fe2Mo и так далее, и σ фазы.
Микроструктура стали в соответствии с настоящим изобретением содержит карбид, выделившийся во время отпуска. Несмотря на то что карбид является эффективной микроструктурой, обеспечивающей прочность стали, высокая прочность на уровне условного предела текучести 860 МПа или более не может быть достигнута только благодаря карбиду, содержащемуся в стали. Соответственно, для осуществления настоящего изобретения необходимо как выделение карбида, так и выделение мелкозернистых интерметаллических соединений, таких как вышеупомянутая фаза Лавеса, σ фаза и так далее.
Термическая обработка стали в соответствии с настоящим изобретением представляет собой типичную закалку-отпуск. Для того чтобы вызвать осаждение мелкозернистых интерметаллических соединений во время отпуска, необходимо в достаточной степени растворить интерметаллические соединения во время закалки. Температура закалки предпочтительно составляет 880-1000°С.
Кроме того, условия, в которых интерметаллические соединения, такие как мелкозернистая фаза Лавеса, σ фаза и т.п., выделяются и обеспечивают 0,2% условный предел текучести 860 МПа или более, включают температурный интервал для отпуска 450-620°С, при этом температуру отпуска обозначают как Т (°С), а время отпуска как t (час), тогда соотношение (20+log t)(T+273) может составлять 13500-17700.
На Фиг.2 представлено изображение, характеризующее условия отпуска, описываемые в изобретении. Фиг.2 показывает связь между 0,2% условным пределом текучести, получаемым в результате изменения значения (20+log t)(T+273) при изменении температур отпуска в интервале 400-650°С после закаливания стали при 920°С, и (20+log t)(T+273).
Как показано на Фиг.2, если (20+log t)(T+273) составляет 13500-17700, то 0,2% условный предел текучести достигает 860 МПа или более.
Если отпуск осуществляют в условиях, при которых (20+log t)(T+273) превышает 17700, плотность дислокаций снижается, либо интерметаллические соединения растворяются в микроструктуре стали, при этом не может быть обеспечено достижение 0,2% условного предела текучести 860 Мпа или более. С другой стороны, если сталь подвергают отпуску при значении параметра менее 13500, то интерметаллические соединения и карбиды не выделяются. Соответственно, 0,2% условный предел текучести 860 МПа или более не может быть обеспечен.
Как следует из вышеприведенного описания, сталь в соответствии с настоящим изобретением должна иметь вышеуказанный химический состав, удовлетворять вышеприведенному выражению (1), а микроструктура стали должна в основном содержать отпущенный мартенсит, выделившиеся во время отпуска карбиды и мелкозернистые интерметаллические соединения, такие как фаза Лавеса, σ фаза и так далее.
Примеры
Были выплавлены и отлиты стали, имеющие химический состав, представленный в таблицах 1(1) и 1(2), полученные литейные слитки были подвергнуты ковке и горячей прокатке для получения стальных пластин, каждая из которых имеет толщину 15 мм, ширину - 120 мм, а длину - 1000 мм. Стальные пластины были подвергнуты закалке (охлаждение водой с 920°С) и отпуску [охлаждение водой после выдержки при 550°С в течение 30 минут (20+log t)(T+273)=16212], а полученные стальные пластины были использованы в различных испытаниях в качестве подвергаемых испытаниям образцов.
Вначале образцы для испытаний в виде круглых брусков, каждый из которых имеет диаметр 6,35 мм и длину параллельной части 25,4 мм, вырезают из соответствующих стальных плит и подвергают испытаниям на растяжение при нормальных температурах. Полученные 0,2% условные пределы текучести указаны в таблице 2.
Затем исследуемые образцы, каждый из которых имеет толщину 3 мм, ширину 20 мм, а длину 50 мм, вырезают из соответствующих стальных плит для испытаний, полируют наждачной бумагой №600, обезжиривают и сушат. Затем полученные исследуемые образцы погружают в 25% водный раствор NaCl, насыщенный при 0,937 МПа газообразным СО2 и при 0,0014 МПа газообразным Н2S (температура: 165°С) на 720 часов.
После погружения определяют снижение веса испытуемых образцов в результате коррозии [(масса перед испытанием)-(масса после испытания)], а наличие или отсутствие локальных очагов коррозии на поверхности испытуемых образцов определяют визуальным способом. Результаты определения степени коррозии стали в соответствии с настоящим изобретением составляют 0,5 мм/год или менее, при этом на их поверхности не было обнаружено локальных очагов коррозии.
Затем образцы, в которых 0,2% условный предел текучести составляет 860 МПа или более в испытаниях на растяжение, подвергают испытаниям с фиксированной нагрузкой, осуществляемым с помощью машины для испытаний пружинного типа (с кольцевым динамометром) в соответствии с ТМ0177-96, способ А NACE. Конкретно, образцы для испытаний в виде круглых брусков, каждый из которых имеет диаметр 6,3 мм и длину параллельной части 25,4 мм, вырезают из соответствующих стальных плит для испытаний и подвергают испытаниям с фиксированной нагрузкой с 0,2% условным пределом текучести-85% (напряжение испытания) при температуре испытания 25°С в течение 720 часов, используя газообразный Н2S при 0,003 МПа (бал. СО2), насыщенный 25% водным раствором NaCl (рН 4,0). В результате все испытуемые образцы оказались неповрежденными.
Микроструктуры исследуемых образцов исследовали под оптическим микроскопом и в виде экстракционного отпечатка. Полученные результаты также представлены в таблице 2.
Как показано в таблице 2, в примерах №1-17, иллюстрирующих настоящее изобретение, 0,2% предел текучести образцов составляет 860 МПа и более, при этом они проявляют превосходное сопротивление коррозии при воздействии газообразного диоксида углерода и сопротивление коррозионному растрескиванию, вызванному сероводородным воздействием. С другой стороны, в сравнительных примерах 22-25, образцы которых имеют содержание Cr и/или Мо за пределами интервала, указанного в описании настоящего изобретения, а также в сравнительных примерах 18-21, образцы которых имеют содержание соответствующих компонентов в пределах интервала, указанного в описании настоящего изобретения, но вышеприведенное выражение (1) не удовлетворено, не обладают достаточным сопротивлением воздействию газообразного диоксида углерода и/или сопротивлением растрескиванию, вызванному нагрузкой.
Промышленная применимость
Мартенситная нержавеющая сталь в соответствии с настоящим изобретением может иметь высокую прочность при 0,2% условном пределе текучести 860 МПа или более и превосходное коррозионное сопротивление воздействию газообразного диоксида углерода и сопротивление коррозионному растрескиванию, вызванному сероводородным воздействием, в результате ограничения содержания в стали указанных элементов и определения содержания Мо в стали в связи с величиной IM, а также образования структуры стали в основном из отпущенного мартенсита, выделившихся во время отпуска карбидов и интерметаллических соединений, таких как фаза Лавеса, σ фаза и т.п. В результате мартенситные нержавеющие стали в соответствии с настоящим изобретением могут быть отнесены к практически применимым в различных областях сталям, которые могут быть широко использованы для изготовления труб, предназначенных для нефтяных скважин в условиях окружающей среды, включающих воздействие газообразного диоксида углерода, сероводорода, ионов хлора либо двух или более из указанных соединений.
название | год | авторы | номер документа |
---|---|---|---|
ПРОДУКТ ИЗ МАРТЕНСИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ | 2018 |
|
RU2718019C1 |
Бесшовная труба нефтяного сортамента из высокопрочной коррозионно-стойкой стали мартенситного класса и способ ее получения | 2021 |
|
RU2807645C2 |
БЕСШОВНАЯ ВЫСОКОПРОЧНАЯ ТРУБА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ НЕФТЕПРОМЫСЛОВОГО СОРТАМЕНТА И СПОСОБ ЕЁ ИЗГОТОВЛЕНИЯ | 2018 |
|
RU2716438C1 |
ВЫСОКОПРОЧНАЯ БЕСШОВНАЯ ТРУБА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ ДЛЯ ТРУБНЫХ ИЗДЕЛИЙ НЕФТЕПРОМЫСЛОВОГО СОРТАМЕНТА И СПОСОБ ЕЕ ПРОИЗВОДСТВА | 2017 |
|
RU2698233C1 |
БЕСШОВНАЯ ТРУБКА ИЛИ ТРУБА ИЗ ВЫСОКОПРОЧНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ ДЛЯ ТРУБНЫХ ИЗДЕЛИЙ НЕФТЕГАЗОПРОМЫСЛОВОГО СОРТАМЕНТА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2013 |
|
RU2649919C2 |
Высокопрочная коррозионно-стойкая бесшовная труба из нефтепромыслового сортамента и способ ее получения | 2019 |
|
RU2719212C1 |
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ, СПОСОБ ИЗГОТОВЛЕНИЯ УКАЗАННОЙ СТАЛИ И ЕЕ ПРИМЕНЕНИЕ | 2016 |
|
RU2721528C2 |
ВЫСОКОПРОЧНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ ДЛЯ НЕФТЯНЫХ СКВАЖИН И ТРУБА ИЗ ВЫСОКОПРОЧНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ ДЛЯ НЕФТЯНЫХ СКВАЖИН | 2011 |
|
RU2519201C1 |
МАРТЕНСИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ | 2004 |
|
RU2335570C2 |
БЕСШОВНАЯ ВЫСОКОПРОЧНАЯ ТРУБА ИЗ СТАЛИ МАРТЕНСИТНОГО КЛАССА ДЛЯ ОБСАДНЫХ КОЛОНН И СПОСОБ ЕЕ ПРОИЗВОДСТВА | 2022 |
|
RU2798642C1 |
Изобретение относится к мартенситным нержавеющим сталям. Сталь содержит, мас. %: углерод 0,005-0,04; кремний 0,5 и менее; марганец 0,1-3,0; фосфор 0,04 и менее; сера 0,01 и менее; хром 10,0-15,0; никель 4,0-8,0; молибден 2,8-5,0; алюминий 0,001-0,10; азот 0,07 и менее, при этом остаток составляет железо и неизбежные примеси. Микроструктура стали на 70 и более % состоит из отпущенного мартенсита и содержит выделившиеся во время отпуска карбиды и интерметаллические соединения, такие как фаза Лавеса, σ фаза и подобные им мелкозернистые фазы, выделившиеся во время отпуска. Сталь имеет высокие предел прочности и 0,2% условный предел текучести 860 МПа или более, высокую коррозионную стойкость к газообразному диоксиду углерода и сопротивление коррозионному растрескиванию, что позволяет изготавливать из стали трубы для нефтяных скважин. 9 н.п. ф-лы, 2 ил., 2 табл.
Mo≥2,3-0,89 Si+32,2 C, (1)
где символы соответствующих элементов в выражении (1) показывают содержание каждого элемента, мас.%.
Mo≥2,3-0,89 Si+32,2 C, (1)
где символы соответствующих элементов в выражении (1) показывают содержание каждого элемента, мас.%.
Mo≥2,3-0,89 Si+32,2 C, (1)
где символы соответствующих элементов в выражении (1) показывают содержание каждого элемента, мас.%.
Mo≥2,3-0,89 Si+32,2 C, (1)
где символы соответствующих элементов в выражении (1) показывают содержание каждого элемента, мас.%.
Mo≥2,3-0,89 Si+32,2 C, (1)
где символы соответствующих элементов в выражении (1) показывают содержание каждого элемента, мас.%.
Mo≥2,3-0,89 Si+32,2 C, (1)
где символы соответствующих элементов в выражении (1) показывают содержание каждого элемента, мас.%.
Mo≥2,3-0,89 Si+32,2 C, (1)
где символы соответствующих элементов в выражении (1) показывают содержание каждого элемента, мас.%.
Mo≥2,3-0,89 Si+32,2 C, (1)
где символы соответствующих элементов в выражении (1) показывают содержание каждого элемента, мас.%.
Mo≥2,3-0,89 Si+32,2 C, (1)
где символы соответствующих элементов показывают содержание каждого элемента, мас.%.
Кипятильник для воды | 1921 |
|
SU5A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
СТАЛЬ | 1992 |
|
RU2009263C1 |
Нержавеющая сталь | 1967 |
|
SU256282A1 |
НОВИКОВ И.И | |||
Теория термической обработки металлов | |||
- М.: Металлургия, 1986, с.394-396 | |||
СМИРНОЙ М.А | |||
и др | |||
Основы термической обработки стали | |||
- М.: ООО «Наука и технологии», 11.01.2002, с.19-20, 336. |
Авторы
Даты
2007-10-10—Публикация
2003-12-18—Подача