СПОСОБ РУЧНОЙ ПЛАЗМЕННОЙ ЗАКАЛКИ Российский патент 2007 года по МПК C21D1/09 

Описание патента на изобретение RU2313581C2

Изобретение относиться к машиностроению и предназначено для поверхностного упрочнения деталей.

Известно, что поверхностное упрочнение (закалку) деталей производят газовыми горелками, индукторами ТВЧ, лазерным лучом и др. источниками поверхностного нагрева. С 80х годов распространение получила плазменная закалка дугой прямого действия, горит между электродом (плазматроном) и изделием. При этом используется дуга прямой полярности, когда неплавящейся электрод является катодом, а изделие - анодом. (Металловедение и термическая обработка металлов, 1988, №12, с.35 в статье "Упрочнение рабочих поверхностей чугунных деталей методом плазменного оплавления" авторов Н.С.Шепелева, М.В.Селиванова и др.).

Недостатком плазменной закалки на прямой полярности является то, что качество закалки в значительной степени зависит от скорости перемещения плазменной дуги по поверхности изделия. С ее увеличением глубина закалки резко уменьшается (Сварочное производство, 2003, №2, с.26 в статье "Поверхностное упрочнение стальных деталей сжатой электрической дугой" авторов А.Е.Михеева, С.С.Ивасева и др.). В еще большей степени на свойства закаленного слоя влияет длина дуги. Обычно для каждого режима подбирается оптимальная длина дуги, при которой дуга горит устойчиво. Ни один из авторов известных публикаций не пытался исследовать влияние длины дуги на свойства закалки. Это произошло потому, что проследить это чрезвычайно трудно. Обычно даже небольшое увеличение длины дуги от оптимального значения резко уменьшает глубину и твердость закалки, а укорочение дуги приводит к оплавлению поверхности, что часто является браковочным признаком.

Высокая чувствительность качества закалки к скорости перемещения и длине плазменной дуги обусловило, что плазменную закалку производят только на автоматических установках, где два вышеприведенных параметра поддаются точной настройке и точному поддержанию в процессе закалки. Ручная плазменная закалка до последнего времени не приводилась именно потому, что неизбежные в ручном процессе колебания длины дуги и скорости закалки дают оплавление поверхности или не обеспечивают ее упрочнения.

Задачей настоящего изобретения является уменьшение чувствительности качества закалки к длине дуги, скорости ее перемещения и, на основе этого, изыскания возможности выполнения плазменной закалки вручную без оплавления поверхности.

Поставленная задача решена путем применения для поверхностной закалки дуги обратной полярности, когда электрод является анодом, а изделие - катодом.

Производилась плазменная закалка на автоматической установке цилиндра из стали 40 диаметром ⊘60 мм со скоростью 43,6 м/час на токе 60 А. Было установлено, что и на прямой и на обратной полярности при длине дуги 9 мм (расстояние от среза сопла плазмотрона до поверхности детали) оплавление закаленной дорожки не происходит. На фиг.1 показаны темплеты, вырезанные из образца с плазменной закалкой, выполненной при длине дуги 3 мм. По ним видно, что при закалке на обратной полярность (поз.1.) поверхность закаленной дорожки не имеет оплавления, а при закалке на прямой полярности (поз.2.) по средине закаленных дорожек имеется оплавление, сформировавшее буртик высотой 0,12 мм. При увеличении длины дуги прямой полярности до 6 мм избежать оплавления не удалось, но высота буртика уменьшилась до 0,06 мм. Таким образом, дуга обратной полярности даже при существенном укорочении не вызывает оплавления закаливаемой поверхности, тогда как даже небольшое укорочение дуги прямой полярности приводит к оплавлению.

На фиг.2 представлено распределение микротвердости по глубине закалки, выполненной дугой прямой полярности. Из нее видно, что с увеличением длины дуги с 3 мм до 9 мм произошло уменьшение: микротвердости с Н500500 до Н500450; а глубины закалки с 0,9 мм до 0,7 мм.

На фиг.3 представлено аналогичное распределение микротвердости по глубине закалки, но выполненное дугой обратной полярности. В данном случае имеет место обратная закономерность: с увеличением длины дуги с 3 мм до 9 мм микротвердость и глубина закалки не уменьшились, а увеличились: микротвердость - с Н500480 до Н500640, а глубина закалки - с 0,7 мм до 1,1 мм. Отсюда можно сделать следующие выводы о преимуществах плазменной закалки на обратной полярности по сравнению с закалкой на прямой полярности.

1. При длине дуги 9 мм, когда в обоих случаях нет оплавления, на обратной полярности выше микротвердость (Н500640 вместо Н500430) и больше глубине закалки (1,1 мм вместо 0,7 мм).

2. Максимальные значения микротвердости и глубины закалки на обратной полярности получены на длинной (9 мм) дуге, которая более удобна, чем короткая, для ведения процесса вручную. Ибо при короткой дуге корпус плазматрона мешает наблюдению за ней, что создает трудности с направлением дуги в требуемое место.

Изложенное позволяет заключить, что на обратной полярности при ведении плазменной закалки вручную, когда происходят колебания длины дуги и скорости ее перемещения, все же возможно получение закаленной поверхности без оплавления с достаточной глубиной упрочнения.

Практическое применение нового способа

Штамп из стали 5ХНМ, массой 2200 кг используется для горячей штамповки титана ВТ-20. При изготовлении он упрочняется объемной закалкой с отпуском на НВ 340. После 1100 штамповок его осаживают для восстановления гравюры. По мере удаления от поверхности во время осадок твердость гравюры снижается и после 8 осадок она достигла НВ 300. Штамп подлежал утилизации, ибо его повторная объемная закалка была невозможна, т.к. потеряв в толщине, при объемной закалке он получил бы недопустимую деформацию. Тогда сложнопрофильную гравюру штампа вручную упрочнили плазменной закалкой на обратной полярности. Твердость поверхности увеличилась до НВ 540, а съем - до 1862 штамповок. Таким образом, ручная плазменная закалка не только продлила срок службы штампа, но и увеличила его стойкость во время компании в 1,7 раза (с 1100 шт. до 1862 шт.).

Штамп из стали 8Х3 используется для холодной вырубки заготовок из стали 30ХГСА толщиной 6,5 мм. Обычно на нем нарубают ˜5 тыс. заготовок, подвергают зачистке, дополнительно нарубают 10 тыс. шт. и утилизируют. Штамп по рабочим кромкам упрочнили вручную плазменной закалкой на обратной полярности; твердость кромок увеличилась с HRC 52 до HRC 60. С двумя зачистками штамп нарубил 40 тыс. заготовок, что в 2,6 раза больше, чем нарубает штамп без плазменной закалки (15 тыс. шт.).

Штамп из стали 5ХВ2С используется для горячей вырубки заготовок из стали 30ХГСА толщиной 10 мм. Обычно с периодическими зачистками он нарубает 8 тыс. заготовок. После ручной плазменной закалки по рабочим кромкам твердость увеличилась с HRC 54 до HRC 62, а наработка штампа возросла до 42,2 тыс. шт., т.е. в 5,3 раза.

Производилась плазменная закалка зубьев венца шестерни сталеразливочного крана. Затрудненный доступ к поверхности зубьев потребовал увеличения длины дуги до 20 мм. Это не отразилось на качестве закалки и срок службы зубчатых венцов увеличелся с 6 мес. до 17 мес., т.к. в 2,8 раза.

Похожие патенты RU2313581C2

название год авторы номер документа
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТИ СТАЛЬНЫХ ИЗДЕЛИЙ 2012
  • Тимофеев Алексей Анатольевич
RU2536854C2
УСТРОЙСТВО ПЛАЗМЕННОЙ ЗАКАЛКИ ДЕТАЛЕЙ ИЗ СТАЛИ И ЧУГУНА В АВТОМАТИЧЕСКОМ И РУЧНОМ РЕЖИМЕ 2008
  • Дёмин Владимир Сергеевич
  • Чадин Леонид Валентинович
  • Рябов Олег Владимирович
RU2379358C1
Способ термической обработки стальных рельсов 2016
  • Балановский Андрей Евгеньевич
RU2644638C2
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТИ СТАЛЬНЫХ ИЗДЕЛИЙ 2014
  • Соловьев Рудольф Юрьевич
  • Куликов Владимир Николаевич
RU2563572C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПРОКАТНЫХ ВАЛКОВ 2005
  • Юрьев Алексей Борисович
  • Ефимов Олег Юрьевич
  • Чинокалов Валерий Яковлевич
  • Некипелов Семен Прохорович
  • Симаков Вадим Петрович
  • Дубинин Сергей Александрович
  • Никиташев Владимир Михайлович
  • Дикань Олег Валерьевич
  • Саломыкин Виктор Васильевич
  • Затепякин Сергей Валентинович
RU2298043C1
СПОСОБ ПОВЕРХНОСТНОГО УПРОЧНЕНИЯ ПРОКАТНЫХ ВАЛКОВ 2009
  • Юрьев Алексей Борисович
  • Мухатдинов Насибулла Хадиатович
  • Козырев Николай Анатольевич
  • Закаулов Евгений Геннадьевич
  • Мезенцев Андрей Владимирович
  • Корнева Лариса Викторовна
RU2398892C1
СПОСОБ УПРОЧНЕНИЯ РАЗДЕЛИТЕЛЬНОГО ШТАМПА 2014
  • Афанасьева Людмила Евгеньевна
  • Барабонова Инна Александровна
  • Барчуков Дмитрий Анатольевич
  • Зубков Николай Семёнович
  • Раткевич Герман Вячеславович
RU2566224C1
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТИ СТАЛЬНЫХ ИЗДЕЛИЙ 1992
  • Загорский В.К.
  • Загорский А.В.
RU2069233C1
СПОСОБ ЭЛЕКТРОДУГОВОГО УПРОЧНЕНИЯ СТАЛЬНЫХ ИЗДЕЛИЙ 2019
  • Князьков Виктор Леонидович
  • Левашова Елена Евгеньевна
RU2735698C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПРОФИЛИРОВАННЫХ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ 2006
  • Лаврик Александр Никитович
  • Ефимов Олег Юрьевич
  • Никиташев Михаил Васильевич
  • Чинокалов Валерий Яковлевич
  • Симаков Вадим Петрович
  • Дубинин Сергей Александрович
  • Дикань Олег Валерьевич
RU2325449C2

Иллюстрации к изобретению RU 2 313 581 C2

Реферат патента 2007 года СПОСОБ РУЧНОЙ ПЛАЗМЕННОЙ ЗАКАЛКИ

Изобретение относится к области термической обработки. Для получения закаленной поверхности без оплавления с достаточной глубиной упрочнения поверхностную закалку осуществляют путем перемещения по поверхности закаливаемого изделия плазменной дуги прямого действия на обратной полярности, когда электрод является анодом, а изделие - катодом. 3 ил.

Формула изобретения RU 2 313 581 C2

Способ поверхностной закалки изделий, включающий закалку путем перемещения по поверхности изделия плазменной дуги прямого действия, возбуждаемой между электродом и изделием, отличающийся тем, что для предупреждения оплавления закаливаемой поверхности с одновременным обеспечением достаточной глубины и твердости закаленного слоя плазменную закалку выполняют на обратной полярности, когда электрод является анодом, а изделие - катодом.

Документы, цитированные в отчете о поиске Патент 2007 года RU2313581C2

Способ восстановления стальных деталей 1989
  • Коротков Владимир Александрович
  • Бердников Андрей Анатольевич
SU1671706A1
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТИ СТАЛЬНЫХ ИЗДЕЛИЙ 2002
  • Стацура В.В.
  • Михеев А.Е.
  • Ивасев С.С.
  • Гирн А.В.
  • Горчаков А.Ю.
RU2252266C2
СПОСОБ ПЛАЗМЕННО-ДУГОВОГО УПРОЧНЕНИЯ РЕЖУЩЕГО ИНСТРУМЕНТА 1993
RU2095430C1
УСТРОЙСТВО ДЛЯ ЗАКАЛКИ ДИСКОВЫХ ПИЛ 1997
  • Барабанцев Г.Е.(Ru)
  • Тюляпин А.Н.(Ru)
  • Луканин Ю.В.(Ru)
  • Тюрин Юрий Николаевич
  • Рябинкова В.К.(Ru)
  • Трайно А.И.(Ru)
RU2123535C1
Устройство для поверхностного нагрева изделий из токопроводящих материалов 1947
  • Красюк Б.А.
SU79811A1
СПОСОБ ВЫДЕЛЕНИЯ ЛЕЙКОЦИТОВ КРОВИ ДЛЯ ХЕМИЛЮМИНЕСЦЕНТНОГО АНАЛИЗА 2002
  • Дюсенова Г.М.
  • Ощепков В.Г.
RU2232395C2

RU 2 313 581 C2

Авторы

Коротков Владимир Александрович

Михайлов Игорь Дмитриевич

Агафонов Эдуард Жоржевич

Бабайлов Дмитрий Сергеевич

Даты

2007-12-27Публикация

2005-10-20Подача