СПОСОБ ДУГОВОЙ НАПЛАВКИ И СВАРКИ С КОМБИНИРОВАННОЙ ГАЗОВОЙ ЗАЩИТОЙ Российский патент 2008 года по МПК B23K9/04 B23K9/173 B23K103/04 

Описание патента на изобретение RU2319584C1

Изобретение относится к наплавке и сварке в среде защитных газов и может быть использовано в различных отраслях машиностроения.

Известен процесс сварки неплавящимся электродом в среде защитного газа, реализующийся с помощью сварочной горелки (см. патент №204162 А2, МПК В23K 9/173, опубл. 17.01.2002), содержащей токоведущий мундштук для подачи сварочной проволоки и вспомогательный угольный электрод, который входит в контакт с мундштуком. В начале сварки зажигают первичную дугу между торцом неподвижной сварочной проволоки и свариваемой заготовкой. Первичная дуга расплавляет небольшой отрезок проволоки и достигает угольного электрода, после чего зажигается вторичная дуга между угольным электродом и заготовкой. После образования сварочной ванны производиться подача сварочной проволоки и сварка продолжается.

Однако в этом процессе сварки возможно науглероживание наплавленного и основного металла за счет эрозии угольного электрода, что недопустимо. Кроме того, подача электронейтральной присадочной проволоки осуществляется в плазму дуги, а не в ее катодное пятно, что не обеспечивает достаточную температуру для максимальной интенсификации процессов массообмена между расплавом капли и легирующим его газом. Также применение нелегирующего газа не позволяет металлургически обрабатывать электродный металл на стадии зарождения и роста капли.

Известен процесс сварки в среде защитных газов, реализуемый с помощью сварочной горелки (см. патент №2392864 А1, МПК В23K 9/28, опубл. 17.03.2004). В этом способе сварка ведется с помощью неплавящегося электрода, закрепленного в мундштуке. Защитный газ подается в зону сварки через каналы в корпусе горелки.

Но при сварке такой горелкой присадочный материал трудно подать в катодную область дуги, где температура достаточна для высокоскоростного протекания металлургических процессов легирования наплавляемого металла на стадии капли, а применение только защитного газа не позволяет легировать наплавленный металл из газовой фазы.

Наиболее близким к изобретению является способ дуговой сварки с комбинированной газовой защитой (см. патент №5079438 В4, МПК В23K 9/16, опубл. 02.11.1993). По этому способу сварку ведут проволокой, поступающей через конический наконечник, в условиях защиты углекислым газом при нормальной температуре, подаваемым через наружное цилиндрическое сопло, и аргоном при нормальной температуре, подаваемым через внутреннее цилиндрическое сопло, концентричное внешнему соплу.

Но этот способ не позволяет подавать проволоку в высокотемпературную область дуги, в которой возможно более эффективное как плавление присадочной проволоки, так и легирование металла образующихся в зоне действия максимальных температур капель из газовой фазы. Данный способ не позволяет управлять процессом переноса капель электродного металла в сварочную ванну, а применение в качестве защитного газа, обладающего высокой окислительной способностью СО2, не обеспечивает достаточного качества наплавленного металла.

Задачей предлагаемого технического решения является создание такого способа наплавки и сварки с комбинированной газовой защитой, который позволит легировать металл азотом уже на стадии зарождения и роста капли и получить качественный наплавленный металл, содержащий до 0,15 мас.% азота.

Технический результат заключается в достижении качественного наплавленного металла, содержащего до 0,15 мас.% азота, за счет совместной подачи смеси газов и присадочной проволоки в высокотемпературную катодную область дуги, термические условия в которой обеспечивают эффективное поглощение азота каплями электродного металла.

Технический результат достигается тем, что в способе дуговой наплавки или сварки стальных изделий с комбинированной газовой защитой, включающем подачу присадочной проволоки и защитного газа через внутреннее цилиндрическое сопло и защитного газа через наружное цилиндрическое сопло, концентричное внутреннему, предварительно зону сварки через наружное цилиндрическое сопло продувают защитным газом, в качестве которого используют аргон, подают от независимого источника питания ток на внутреннее цилиндрическое сопло, которое выполняют в виде неплавящегося электрода, и зажигают дугу, после образования в которой высокотемпературной области и переходе ее в полость неплавящегося электрода в указанную область подают присадочную проволоку, подключенную к импульсному источнику питания, и защитный газ, в качестве которого используют смесь аргона с азотом, при этом объемное содержание аргона ni и азота nа в смеси выбирают в интервале 10÷20:1, а расход смеси определяют из соотношения Q=kd, где k - экспериментально определяемый коэффициент, учитывающий влияние диаметра присадочной проволоки на расход газовой смеси; d - диаметр присадочной проволоки, а соотношение тока с неплавящегося электрода и импульсного тока, подаваемого на присадочную проволоку, выбирают в пределах 2÷2,5.

Отличительной особенностью предлагаемого способа является то, что присадочная проволока подается совместно со смесью легирующего и защитного газов в высокотемпературную область в дуге. Образующаяся за счет формирования в полости неплавящегося электрода распределенного катодного пятна высокотемпературная область позволяет интенсифицировать процесс разложения молекулярного азота на атомарный, который диффундирует в каплю электродного металла в результате реакции N2↔N+N. Наложение на присадочную проволоку импульсов тока дает возможность управлять процессом переноса капель электродного металла.

Расход газовой смеси зависит от диаметра присадочной проволоки и определяют по формуле Q=kd, где d - диаметр присадочной проволоки, k=3 - экспериментально определяемый коэффициент в зависимости от необходимого количества азота для оптимального легирования конкретного сплава с определенным типом матрицы и структурно-фазовым составом. Физический смысл коэффициента k заключается в степени эффективности использования подаваемой в дугу доли азота, участвующего в легировании элементарного объема плавящегося торца присадочной проволоки. Такой элементарный объем может быть представлен в виде произведения площади сечения проволоки на ее единичную высоту, условно равную 1 мм. Вышеуказанное соотношение справедливо для диаметров присадочных проволок 1-4 мм. Присадочную проволоку диаметром менее 1 мм применять нецелесообразно ввиду пересыщения образующихся мелких капель азотом и обильного порообразования, а также неоправданного снижения производительности процесса, при диаметрах проволоки более 4 мм нарушаются термические условия образования высокотемпературной области.

Соотношение инертного газа ni и азота nа, подаваемых в смеси во внутреннее цилиндрическое сопло выбирают в интервале 10÷20:1. Соблюдение данного диапазона позволит получить качественный наплавленный металл с содержанием азота до 0,15 мас.%. При соотношении ni/nа меньше 10 в наплавленном металле будут образовываться поры по причине избыточного содержания азота. При ni/nа более 20 азота в газовой смеси будет недостаточно для заданного легирования металла.

Соотношение тока с неплавящегося полого электрода и импульсного тока, подаваемого на сварочную проволоку, выбирают в пределах 2...2,5 для заявленных диаметров проволок. Нахождение соотношения токов в указанных выше пределах обуславливает качественный перенос капель электродного металла в сварочную ванну. При соотношении этих токов менее 2 возможен взрыв капли электродного металла, что не позволит насытить ее азотом, а также приведет к выходу из строя неплавящегося электрода, а при соотношении более 2,5 тока импульса окажется недостаточно для срыва капли электродного металла, что ведет к нежелательному росту капель, увеличению их разбрызгивания и, как следствие, к неудовлетворительному формированию наплавленного металла.

Сущность изобретения поясняется чертежами.

На фиг.1 изображена схема способа наплавки.

На фиг.2 показано поперечное сечение горелки.

На фиг.3 изображена микроструктура (×500) наплавленного металла с содержанием азота 0,13 мас.%

Сварочная горелка (фиг.1, 2), изготовленная для реализации способа, состоит из корпуса 1, в котором предусмотрены наружное сопло для поддува инертного газа и внутреннее цилиндрическое сопло концентричное наружному соплу, для размещения в нем неплавящегося полого электрода 2, в полости которого при наплавке образуется высокотемпературная область 3, и прижимной гайки 4 для его закрепления в корпусе. В прижимную гайку вмонтированы керамические вставки 5 для изоляции присадочной проволоки 6 от корпуса 1 горелки. Конструкция закрыта крышкой 7, в которой предусмотрены отверстия для поддува аргона и крепления сварочного пистолета 8. Корпус горелки подключен к источнику питания 9, а присадочная проволока - к импульсному источнику питания 10. Дуга горит между неплавящимся электродом 2 и наплавляемым изделием 11.

Способ реализуется следующим образом. Предварительно осуществляют продувку зоны сварки инертным газом через наружное цилиндрическое сопло, выполняющее функцию корпуса 1 горелки, после включения независимого источника питания зажигают дугу между неплавящимся электродом 2, являющимся одновременно внутренним цилиндрическим соплом, и изделием 11. Через определенное время, необходимое для перехода катодного пятна с торца неплавящегося электрода 2 в его полость, в дуге образуется высокотемпературная область 3. После чего включают импульсный источник питания 10 и устанавливают значения тока из расчета нахождения соотношения тока с неплавящегося электрода и импульсного тока в пределах 2...2,5. Затем совместно со смесью азота и инертного газа в высокотемпературную область дуги 3 подают присадочную проволоку 6, где она плавится с образованием капель электродного металла. Капля уже в процессе зарождения и роста насыщается азотом и при прохождении импульса тока срывается с торца присадочной проволоки 6 в сварочную ванну. Соотношение инертного газа и азота в смеси в процессе наплавки поддерживают в диапазоне 10÷20:1, а расход газовой смеси Q устанавливают равным произведению диаметра проволоки d на коэффициент пропорциональности k, который постоянен для используемых параметров процесса.

Пример 1.

Проводили наплавку на Сталь 3 порошковой проволокой типа ПП-Нп-07Х15Н3Ю2ГВФ (ТУ №355 ВолгГТУ) диаметром 3 мм.

Предварительно осуществляли продувку зоны сварки аргоном через внешнее сопло корпуса горелки с расходом 8 л/мин. Затем зажигали дугу между вольфрамовым электродом и изделием. Ток дуги составлял 500 А, напряжение на дуге 25 В. Через 5 секунд образовывалась высокотемпературная область в дуге, после чего включали импульсный источник питания и одновременно подавали присадочную проволоку и газовую смесь с объемным соотношением аргона к азоту 15:1. Расход газовой смеси составлял 9 л/мин. На присадочной проволоке импульсный ток составлял 220 А, а скорость ее подачи - 108 м/ч. Исследованиями структуры хорошо сформированного наплавленного металла установлено, что в нем в достаточном количестве (0,12 мас.%) содержатся азот в виде нитрида AlN (фиг.3). Также проводили сварку листовой стали 3 толщиной 4 мм. Полученные данные свидетельствуют, что металл шва хорошо сформирован и содержит азот в количестве 0,12 мас.%.

Содержание азота в наплавленном металле определяли по данным химического анализа. Качество металла оценивали методами металлографии.

Сравнительные данные испытаний предлагаемого способа дуговой наплавки и сварки в сравнении с прототипом приведены в таблице, из которой следует, что заявляемый способ дуговой наплавки характеризуется качественным наплавленным металлом с содержанием азота 0,10...0,15 мас.%.

Таблица.Влияние параметров заявляемого способа на качество наплавленного металла и содержание в нем азотаОбъектДиаметр проволоки, d, ммСоотношение инертного газа и азота в смесиСоотношение тока с неплавящегося электрода и импульсного тока, подаваемого на проволокуРасход газовой смеси, Q, л/минКачество наплавленного металлаПроизводительность, кг/чСодержание азота в наплавленном металле мас.%Предлагаемый110:12,03Высокое, нет газовых пор и неметаллических включений, формирование шва отличное5достаточное 0,15420:12,51220достаточное 0,10215:12,3610достаточное 0,120,58:11,71,5Формирование в шве неудовлетворительное, разбрызгивание капель15недостаточное менее 0,10523:13,015Формирование шва неудовлетворительное, газовые поры25превышенное более 0,20Прототип3--7-7отсутствует

Использование предлагаемого способа наплавки и сварки дает в сравнении с известными способами следующий технический результат.

1. Возможность легирования наплавленного металла на стадии зарождения и роста электродной капли в высокотемпературной катодной области дуги.

2. Повышение производительности наплавки и сварки за счет увеличения скорости плавления присадочной проволоки и исключение взаимосвязи между скоростью ее подачи и сварочным током.

3. Перераспределение тепловой мощности, выделяемой на аноде (изделии), и снижение в связи с этим, проплавления основного металла и термического воздействия на него, что обеспечивает уменьшение остаточных напряжений и возможность получения заданного состава наплавленного металла при минимальном количестве проходов.

4. Повышение износостойкости и термической стабильности наплавленного металла за счет нитридного упрочнения.

Похожие патенты RU2319584C1

название год авторы номер документа
СПОСОБ ПЛАЗМЕННОЙ НАПЛАВКИ И СВАРКИ КОМБИНАЦИЕЙ ДУГ 2023
  • Щицын Юрий Дмитриевич
  • Щицын Владислав Юрьевич
  • Овчинников Иван Петрович
RU2815965C1
СПОСОБ СВАРКИ КОРПУСНЫХ КОНСТРУКЦИЙ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 1996
  • Шуляковский О.Б.
  • Клещев В.Г.
  • Рыбальченко Ю.Б.
  • Шевелкин В.И.
RU2089364C1
СПОСОБ ДУГОВОЙ МЕХАНИЗИРОВАННОЙ ИМПУЛЬСНОЙ НАПЛАВКИ 2017
  • Сидоров Владимир Петрович
RU2641940C1
СПОСОБ ПЛАЗМЕННОЙ СВАРКИ И НАПЛАВКИ 2023
  • Щицын Юрий Дмитриевич
  • Щицын Владислав Юрьевич
  • Овчинников Иван Петрович
RU2815524C1
СПОСОБ МЕХАНИЗИРОВАННОЙ НАПЛАВКИ КОМБИНАЦИЕЙ ДУГ 2017
  • Сидоров Владимир Петрович
RU2649351C1
СПОСОБ ПЛАЗМЕННОЙ НАПЛАВКИ И СВАРКИ КОМБИНАЦИЕЙ ДУГ 2021
  • Сидоров Владимир Петрович
  • Советкин Дмитрий Эдуардович
RU2763912C1
СПОСОБ СВАРКИ, НАПЛАВКИ И ПАЙКИ КОМБИНАЦИЕЙ ДУГ ПРЯМОГО И КОСВЕННОГО ДЕЙСТВИЯ 2020
  • Сидоров Владимир Петрович
  • Советкин Дмитрий Эдуардович
RU2758357C1
СПОСОБ ВЫСОКОСКОРОСТНОЙ ЭЛЕКТРОДУГОВОЙ НАПЛАВКИ ЦИЛИНДРИЧЕСКИХ ДЕТАЛЕЙ 2002
  • Машрабов Нематулла
RU2215624C1
Способ автоматической наплавки в инертном газе комбинацией дуг 2022
  • Сидоров Владимир Петрович
  • Советкин Дмитрий Эдуардович
RU2798645C1
СПОСОБ АВТОМАТИЧЕСКОЙ СВАРКИ КОМБИНАЦИЕЙ ДУГ 2017
  • Сидоров Владимир Петрович
RU2648618C1

Иллюстрации к изобретению RU 2 319 584 C1

Реферат патента 2008 года СПОСОБ ДУГОВОЙ НАПЛАВКИ И СВАРКИ С КОМБИНИРОВАННОЙ ГАЗОВОЙ ЗАЩИТОЙ

Изобретение относится к наплавке и сварке стальных изделий в среде защитных газов. Предварительно зону сварки через наружное цилиндрическое сопло продувают защитным газом, в качестве которого используют аргон. Подают от независимого источника питания ток на внутреннее цилиндрическое сопло, которое выполняют в виде полого неплавящегося электрода, и зажигают дугу. После образования в дуге высокотемпературной области и переходе ее в полость неплавящегося электрода в указанную область подают присадочную проволоку, подключенную к импульсному источнику питания, и защитный газ, в качестве которого используют смесь аргона с азотом. Объемное соотношение аргона ni и азота na в смеси выбирают в интервале 10÷20:1. Расход смеси определяют из соотношения Q=kd, где k=3 - экспериментально определяемый коэффициент, учитывающий влияние диаметра присадочной проволоки на расход газовой смеси; d - диаметр присадочной проволоки. Соотношение тока с полого неплавящегося электрода и импульсного тока, подаваемого на присадочную проволоку, выбирают в пределах 2÷2,5. Повышается качество металла шва за счет увеличения содержания азота до 0,15 мас.%. 3 ил., 1 табл.

Формула изобретения RU 2 319 584 C1

Способ дуговой наплавки или сварки стальных изделий с комбинированной газовой защитой, включающий подачу присадочной проволоки и защитного газа через внутреннее цилиндрическое сопло и защитного газа через наружное цилиндрическое сопло, концентричное внутреннему, отличающийся тем, что предварительно зону сварки через наружное цилиндрическое сопло продувают защитным газом, в качестве которого используют аргон, подают от независимого источника питания ток на внутреннее цилиндрическое сопло, которое выполняют в виде неплавящегося электрода, и зажигают дугу, после образования в которой высокотемпературной области и переходе ее в полость неплавящегося электрода в указанную область подают присадочную проволоку, подключенную к импульсному источнику питания, и защитный газ, в качестве которого используют смесь аргона с азотом, при этом объемное содержание аргона ni и азота nа в смеси выбирают в интервале 10÷20:1, а расход смеси определяют из соотношения Q=kd, где k=3 - экспериментально определяемый коэффициент, учитывающий влияние диаметра присадочной проволоки на расход газовой смеси; d - диаметр присадочной проволоки, а соотношение тока с неплавящегося электрода и импульсного тока, подаваемого на присадочную проволоку, выбирают в пределах 2÷2,5.

Документы, цитированные в отчете о поиске Патент 2008 года RU2319584C1

Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Способ дуговой сварки неплавящимся электродом в защитных газах 1976
  • Веретник Лев Давидович
  • Лукьянчиков Виктор Иванович
  • Несвитайло Виктор Григорьевич
SU733905A1
Горелка для защиты сварочной ванны 1985
  • Тывончук Петр Афанасьевич
  • Науменко Владимир Николаевич
  • Василенко Михаил Александрович
  • Бовсуновский Александр Николаевич
SU1318359A1
Способ дуговой сварки в среде защитных газов 1985
  • Сущенко Сергей Александрович
  • Орлов Михаил Васильевич
  • Бессонова Надежда Ивановна
  • Бугаец Анатолий Александрович
  • Воличенко Николай Павлович
SU1569136A1
Способ дуговой сварки в защитныхгАзАХ 1977
  • Виноградов Василий Сергеевич
  • Колесников Валерий Константинович
SU795802A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1

RU 2 319 584 C1

Авторы

Соколов Геннадий Николаевич

Лебедев Евгений Игоревич

Зорин Илья Васильевич

Цурихин Сергей Николаевич

Потапов Александр Николаевич

Лысак Владимир Ильич

Даты

2008-03-20Публикация

2006-05-26Подача