Изобретение относится к износостойким материалам для наплавки и может быть применено для изготовления новых, восстановления и увеличения срока службы изношенных деталей, работающих в условиях абразивного и ударно-абразивного износа, методом электронно-лучевой наплавки.
В настоящее время для увеличения износостойкости рабочих поверхностей деталей механизмов и машин, как при их изготовлении, так и в процессе ремонта, в качестве наплавляемых порошковых смесей обычно применяются твердые и сверхтвердые композиционные материалы, такие как стеллит, сормайт, релит [1. Гуляев А.П. Металловедение. - М.: Металлургия 1986, 544 с.]. Данные наплавочные материалы нашли широкое применение в горно-добывающих отраслях промышленности, металлургии, где нет жесткого требования по качеству структуры наплавки. В качестве упрочняющей фазы они содержат 30...90% дорогостоящих карбидов титана, вольфрама, молибдена, которые крайне неравномерно распределены по объему наплавленного слоя особенно при их содержании до 30...50%. Главным недостатком композиционных наплавок является хрупкость из-за большого содержания упрочняющих частиц, что ограничивает их области применения в тяжелонагруженных узлах трения с большими контактными нагрузками, сопровождающимися ударом.
Известен композиционный сплав для наплавки (2. А.С. 1010770 В23К 35/30, С22С 29/00, опубликовано 27.02.2003), содержащий твердые сплавы на основе карбидов титана, оксикарбонитридов титана и сплав-связку на основе металла группы железа при следующем соотношении компонентов, вес.%:
Твердый сплав на основе карбидов титана - 20...60
Твердый сплав на основе оксикарбонитридов титана - 20...60
Сплав-связка на основе металла группы железа - 20...60.
К недостаткам данного композиционного материала относится высокая хрупкость и неравномерное распределение упрочняющих частиц на основе карбидов и оксикарбонитридов титана при малом их содержании, что не позволяет обеспечить равную износостойкость упрочненного слоя по всей его толщине.
Известен композиционный материал для износостойкой наплавки электронным лучом (3. RU №2205094 С2, МПК ВВ23К 9/04, 27.05.2003 (прототип)), предназначенный для восстановления изношенных поверхностей различных изделий. Предлагаемый наплавочный материал содержит (вес.%):
Карбонитрид титана - 40-60
Быстрорежущая сталь - Остальное
К недостаткам данного наплавочного материала относится большое содержание упрочняющих частиц, формирование каркаса из карбонитрида титана и, как следствие, повышенная хрупкость при ударно-абразивном износе.
Задача, на решение которой направлено изобретение, заключается в разработке экономнолегированного композиционного материала для наплавки, обеспечивающего равномерную структуру по толщине упрочненного слоя. Известно, что наибольшей пластичностью и вязкостью из всех структурных составляющих стали обладает аустенит. В аустените может растворяться значительное количество легирующих элементов, а дальнейшая термическая обработка позволяет им выделиться в виде дисперсных твердых фаз. Дополнительное упрочнение может быть достигнуто переводом аустенитной матрицы в метастабильное состояние [4. Богачев И.Н. Кавитационные разрушения и кавитационно-стойкие сплавы. - М.: Металлургия, 1972. - 189 с.]. Это позволит матрице в процессе эксплуатации наплавленных изделий упрочняться за счет деформационного мартенситного превращения [5. Гнюсов С.Ф., Тарасов С.Ю. Фазовые превращения в твердом сплаве при трении и оценка фрактальных свойств поверхностей трения / Трение и износ. - 2000. - №1. - С.82-88].
Указанный технический результат достигается тем, что композиционные материалы (см. табл.1) готовят путем смешивания порошков исходных компонентов, спекания, последующего дробления полученных спеков и рассевом их на фракции.
Предложенный состав обеспечивает получение наплавленного металла со структурой стабильного (никелевого) или метастабильного (марганцовистого) аустенита, упрочненного исходными частицами карбида титана, зернами карбида титана, легированного молибденом, и зернами карбида ванадия, или зернами карбида ванадия и карбида типа М6С ((Fe,Mo,Mn)6C) (до 20...22 об.%), имеющими мультимодальное распределение по размерам в объеме упрочненного слоя. Мультимодальное распределение упрочняющей фазы (TiC и М6С) достигается совмещением операции электронно-лучевой наплавки и старения. Такая структура обеспечивает высокую пластичность и сопротивление ударно-абразивному изнашиванию по всей толщине упрочненного слоя без дополнительной операции термической обработки.
Введение в состав порошковой смеси ванадия, молибдена, карбида вольфрама или карбида титана ниже предлагаемых пределов содержания элементов не обеспечивает формирование мультимодальной структуры с одновременным резким уменьшением износостойкости наплавленного металла. Увеличение содержания данных элементов приводит к существенному удорожанию материала покрытия без заметного улучшения его свойств.
Сформированная таким образом мультимодальная структура позволяет увеличить микротвердость наплавки, уменьшить дисперсию ее распределения, уменьшить износ материала 4...6 раз по сравнению с эталоном и сохранить его равномерность по всей толщине наплавки (см. табл.2). Абразивная износостойкость определялась при износе о не жесткозакрепленные абразивные частицы (ГОСТ 23.208-79). В качестве абразивного материала использовался кварцевый песок зернистостью 160...350 мкм при нагрузке на образец 44±0,25 Н.
Пример 1. Смесь исходных порошков (углерод - 0,9...1,0%; марганец - 20%; молибден - 4,0%; ванадий - 4,0%; карбид титана - 10,0%; железо - остальное) засыпается в керамический тигель и подвергается спеканию в вакууме при температуре 1100...1120°С в течение 30...40 минут. После охлаждения в печи образовавшийся спек подвергают дроблению и рассеву на фракции. Для наплавки используют фракцию композиционного порошка 90...250 мкм. На установке электронно-лучевой наплавки, оборудованной блоком развертки луча и системой подачи порошкового материала в зону действия электронного луча, проводят наплавку. Термическую обработку (старение) наплавленных валиков проводят непосредственно в наплавочной камере путем воздействия электронного луча в процессе наплавки последующих валиков и в конце всего процесса наплавки в виде воздействия электронного пучка на наплавленную поверхность.
Пример 2. Смесь исходных порошков (углерод - 0,9...1,0%; марганец - 20%; молибден - 4,0%; ванадий - 4,0%; карбид вольфрама - 15,0%; железо - остальное) засыпается в керамический тигель и подвергается спеканию в вакууме при температуре 1050...1070°С в течение 30...40 минут. После охлаждения печи образовавшийся спек подвергают дроблению и рассеву на фракции. Для наплавки используют фракцию композиционного порошка 90...250 мкм. На установке электронно-лучевой наплавки, оборудованной блоком развертки луча и системой подачи порошкового материала в зону действия электронного луча, проводят наплавку. Термическую обработку (старение) наплавленных валиков проводят непосредственно в наплавочной камере путем воздействия электронного луча в процессе наплавки последующих валиков и в конце всего процесса наплавки в виде воздействия электронного пучка на наплавленную поверхность.
Пример 3. Смесь исходных порошков (никель - 20%; молибден - 4,0%; ванадий - 4,0%; карбид титана - 10,0%; железо - остальное) засыпается в керамический тигель и подвергается спеканию в вакууме при температуре 1100...1120°С в течение 30...40 минут. После охлаждения печи образовавшийся спек подвергают дроблению и рассеву на фракции. Для наплавки используют фракцию композиционного порошка 90...250 мкм. На установке электронно-лучевой наплавки, оборудованной блоком развертки луча и системой подачи порошкового материала в зону действия электронного луча, проводят наплавку. Термическую обработку (старение) наплавленных валиков проводят непосредственно в наплавочной камере путем воздействия электронного луча в процессе наплавки последующих валиков и в конце всего процесса наплавки в виде воздействия электронного пучка на наплавленную поверхность.
Пример 4. Смесь исходных порошков (никель - 20%; молибден - 4,0%; ванадий - 4,0%; карбид вольфрама - 15,0%; железо - остальное) засыпается в керамический тигель и подвергается спеканию в вакууме при температуре 1050...1070°С в течение 30...40 минут. После охлаждения печи образовавшийся спек подвергают дроблению и рассеву на фракции. Для наплавки используют фракцию композиционного порошка 90...250 мкм. На установке электронно-лучевой наплавки, оборудованной блоком развертки луча и системой подачи порошкового материала в зону действия электронного луча, проводят наплавку. Термическую обработку (старение) наплавленных валиков проводят непосредственно в наплавочной камере путем воздействия электронного луча в процессе наплавки последующих валиков и в конце всего процесса наплавки в виде воздействия электронного пучка на наплавленную поверхность.
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ИЗНОСОСТОЙКОЙ НАПЛАВКИ ЭЛЕКТРОННЫМ ЛУЧОМ
композиционной
наплавки
наплавки
карбидных частиц,
dcp мкм
карбидных частиц, мкм
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ИЗНОСОСТОЙКОЙ НАПЛАВКИ ЭЛЕКТРОННЫМ ЛУЧОМ | 2009 |
|
RU2400339C1 |
СПОСОБ ЭЛЕКТРОННО-ЛУЧЕВОЙ НАПЛАВКИ ПОКРЫТИЙ С МУЛЬТИМОДАЛЬНОЙ СТРУКТУРОЙ | 2006 |
|
RU2309827C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ НАПЛАВКИ И СПОСОБ ЕГО НАНЕСЕНИЯ | 2006 |
|
RU2311275C1 |
ПОРОШКОВЫЙ СПЛАВ НА ОСНОВЕ ЖЕЛЕЗА ДЛЯ ИЗНОСОСТОЙКОЙ НАПЛАВКИ И НАПЫЛЕНИЯ | 2015 |
|
RU2607066C2 |
Порошковый сплав для изготовления объемных изделий методом селективного спекания | 2017 |
|
RU2657968C1 |
СПОСОБ ЭЛЕКТРОННО-ЛУЧЕВОЙ НАПЛАВКИ | 2000 |
|
RU2205094C2 |
Состав для наплавки | 2020 |
|
RU2752721C1 |
НАНОСТРУКТУРИРОВАННАЯ НАПЛАВОЧНАЯ ПРОВОЛОКА | 2013 |
|
RU2538227C1 |
ПОРОШКОВАЯ ПРОВОЛОКА | 2011 |
|
RU2467854C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТОДОМ НАПЛАВКИ МЕТАЛЛИЧЕСКОГО ПОКРЫТИЯ С УЛЬТРАМЕЛКОДИСПЕРСНОЙ СТРУКТУРОЙ И УПРОЧНЯЮЩИМИ ЧАСТИЦАМИ В НАНОРАЗМЕРНОМ ДИАПАЗОНЕ | 2007 |
|
RU2350441C2 |
Изобретение может быть использовано для изготовления новых, восстановления и увеличения срока службы изношенных деталей, работающих в условиях абразивного и ударно-абразивного износа. Экономнолегированный композиционный материал готовят путем смешивания порошков исходных компонентов, спекания, последующего дробления полученных спеков и рассевом их на фракции. Составы обеспечивают получение наплавленного металла со структурой стабильного (никелевого) или метастабильного (марганцовистого) аустенита, упрочненного исходными частицами карбида титана, зернами легированного молибденом карбида титана и зернами карбида ванадия или зернами карбида ванадия и карбида типа М6С ((Fe,Mo,Mn)6С) (до 20...22 об.%), имеющими мультимодальное распределение по размерам в объеме упрочненного слоя. Мультимодальное распределение упрочняющей фазы (TiC и М6С) достигается совмещением операции электронно-лучевой наплавки и старения. Такая структура обеспечивает высокую пластичность и сопротивление ударно-абразивному изнашиванию по всей толщине упрочненного слоя. 4 н.з. ф-лы, 2 табл.
СПОСОБ ЭЛЕКТРОННО-ЛУЧЕВОЙ НАПЛАВКИ | 2000 |
|
RU2205094C2 |
ИЗНОСОСТОЙКИЙ СПЛАВ | 1997 |
|
RU2120491C1 |
ИЗНОСОСТОЙКИЙ НАПЛАВОЧНЫЙ МАТЕРИАЛ | 1999 |
|
RU2164200C1 |
Композиционный материал для наплавки | 1973 |
|
SU487737A1 |
DE 2830578 A1, 18.01.1979. |
Авторы
Даты
2008-04-20—Публикация
2006-06-26—Подача