СПОСОБ ПРОИЗВОДСТВА ТЕРМОМЕХАНИЧЕСКИ ОБРАБОТАННЫХ ГОРЯЧЕКАТАНЫХ ТРУБ Российский патент 2009 года по МПК C21D9/08 C21D8/10 

Описание патента на изобретение RU2353671C2

Изобретение относится к термической обработке в трубопрокатном производстве.

Известен способ термомеханической обработки бесшовных труб [Авторское свидетельство СССР №347355, Кл. C21D 9/08, 1972], являющийся, по существу, одной из разновидностей высокотемпературной термомеханической обработки (ВТМО), поскольку при его осуществлении трубы, материал которых находится в состоянии аустенита, после горячей пластической деформации подвергают контролируемому охлаждению. В самом деле, согласно изобретению данный способ включает горячую пластическую деформацию труб и охлаждение, состоящее из начального, совершаемого со скоростью, предотвращающей распад аустенита, а затем окончательного на воздухе. По мнению авторов изобретения, такое непрерывное двухстадийное охлаждение позволяет получить бейнитную структуру, обеспечивающую высокую прочность и удовлетворительную пластичность.

Однако не все стали при непрерывном ускоренном, пусть и двухстадийном, охлаждении дают устойчивое бейнитное превращение, которое гарантированно можно обеспечить только путем изотермической закалки. Так, при непрерывном ускоренном охлаждении сталей (например, высокоуглеродистых и некоторых легированных), у которых точки начала мартенситного превращения и начала бейнитного превращения близки и составляют 450…500°С, основная часть исходного аустенита превращается в мартенсит, и только небольшая часть остаточного аустенита превращается в бейнит, т.е. образуется смешанная мартенситно-бейнитная структура, обладающая при высокой прочности низкой пластичностью и вязкостью [Металловедение и термическая обработка стали: Справочник в 3-х т. под ред. Бернштейна М.Л. и Рахштадта А.Г. Т.2. - Основы термической обработки. М.: Металлургия, 1983, с.150-153].

Поставлена техническая задача: повысить ударную вязкость горячекатаной трубы.

Поставленная задача решается созданием способа производства термомеханически обработанных горячекатаных труб, включающим горячую пластическую деформацию трубы, ее охлаждение со скоростью, предотвращающей распад аустенита, и последующее охлаждение на воздухе, в котором согласно изобретению охлаждение со скоростью, предотвращающей распад аустенита, осуществляют до температуры, лежащей в интервале мартенситного превращения, а после охлаждения на воздухе трубу нагревают в индукторе, питаемом переменным током частотой 50…60 Гц, до температуры 740…760°С в течение 1…1,5 мин, выдерживают в течение 2…4 мин и окончательно охлаждают на воздухе.

Применение индукционного метода нагрева обеспечивает высокоскоростной и равномерный по объему прогрев труб и тем самым высокую производительность, а простота конструкции индукционных установок, использующих для питания сетевой ток частотой 50…60 Гц, гарантирует минимум капитальных затрат. Кроме того, применение тока частотой 50…60 Гц позволяет ограничивать температуру нагрева значениями 740…760°С. Данная температура несколько выше допустимых температур для обычного печного отпуска, поскольку она превышает критические значения, однако благодаря высокой скорости нагрева и последующей короткой выдержке превращения в материале труб запаздывают и не переходят в критическую стадию, чем и достигается эффект, аналогичный печному отпуску. В результате формируется структура сорбита отпуска, что в итоге гарантирует достаточную прочность обработанного материала при его высокой пластичности и вязкости.

Изменяя время выдержки при данной температуре, получают требуемые значения твердости и прочности. Так, сокращая время выдержки, обеспечивают повышение твердости и прочности. Наращивание же времени выдержки понижает твердость и прочность.

Известно, что скорость охлаждения, предотвращающая распад аустенита, называемая также сверхкритической скоростью, для разных сталей различна и определяется их химическим составом. В частности, для сталей мартенситного класса (например, 40Х13) данная скорость обеспечивается обычным охлаждением на воздухе, т.е. непрерывное охлаждение на воздухе оказывается также и тем двухстадийным, которое используется в предлагаемом способе, поскольку сначала при охлаждении с температуры окончания горячей пластической деформации блокируется перлитный распад аустенита, а затем, после того как температура упадет ниже точки начала мартенситного превращения, аустенит трансформируется в мартенсит. Для других же сталей сверхкритическая скорость охлаждения достигается выбором охлаждающей среды, в качестве которой можно использовать влажную (водо-воздушную), водную, масляную, эмульсионную, а также и мощную струю направленного воздуха.

Пример 1. Горячекатаную трубу из стали 45Х, имеющую наружный диаметр 92 мм, длину - 1100 мм и толщину стенки - 13 мм, после ее выхода из калибровочного стана охлаждали от температуры 880°С, при которой сталь 45Х имеет аустенитное состояние, до температуры 260°С со скоростью, равной 31°С/с, что для этой стали гарантированно исключает распад аустенита. Данную скорость охлаждения обеспечили выдержкой трубы в воде, имеющей температуру 35°С, в течение 20 с, после чего трубу охлаждали на воздухе до температуры не более 60°С. Далее трубу нагревали до температуры 740°С в течение 1 мин и выдерживали при этой температуре в течение 3 мин, осуществляя нагрев и выдержку путем поступательного перемещения трубы со скоростью 0,017 м/с через индуктор диаметром 180 мм и длиной 4 м, питаемый переменным током частотой 50 Гц под напряжением 380 В. После выхода из индуктора трубу охлаждали на воздухе до температуры окружающей среды.

Механические свойства готовых труб следующие: предел текучести - 510…540 МПа, предел прочности - 720…760 МПа, относительное удлинение - 22…25%, ударная вязкость при температуре 20°С - 1,4…1,6 МДж/м2, а при -40°С - 0,7…0,9 МДж/м2. Полученный результат показывает, что трубы могут успешно эксплуатироваться в условиях отрицательных температур.

Пример 2. Трубу из стали 30ХМА диаметром 102 мм с толщиной стенки 7 мм и длиной 1500 мм после ее выхода из калибровочного стана охлаждали воздушным потоком, создаваемым вентилятором мощностью 25 кВт, с температуры 880°С до температуры 260°С в течение 50 с, что обеспечило скорость охлаждения 12,5°С/с, затем охлаждали на спокойном воздухе до температуры не выше 60°С. Далее трубу нагревали до температуры 760°С за 1 мин и выдерживали в при этой температуре в течение 4 мин путем поступательного перемещения со скоростью 0,013 м/с через индуктор диаметром 180 мм и длиной 4 м, питаемый переменным током 50 Гц под напряжением 380 В, после чего окончательно охлаждали на воздухе.

Механические свойства труб: предел текучести - 630…650 МПа, предел прочности - 920…950 МПа, относительное удлинение - 20…22%, ударная вязкость - 0,9…1,2 МДж/м2. Это означает, что эффект обратимой отпускной хрупкости был подавлен.

Похожие патенты RU2353671C2

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ ЛЕГИРОВАННОЙ СТАЛИ 2009
  • Горынин Игорь Васильевич
  • Малышевский Виктор Андреевич
  • Хлусова Елена Игоревна
  • Мальцева Людмила Ивановна
  • Орлов Виктор Валерьевич
  • Круглова Александра Анатольевна
  • Голосиенко Сергей Анатольевич
  • Пазилова Ульяна Анатольевна
  • Шахпазов Евгений Христофорович
  • Зайцев Александр Иванович
RU2397255C1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ 2015
  • Попелюх Альберт Игоревич
  • Никулина Аэлита Александровна
  • Попелюх Павел Альбертович
  • Юркевич Мария Руслановна
RU2588936C1
Способ изготовления изделий преимущественно из сталей мартенситного класса 1983
  • Гайко Виктор Андреевич
  • Давидович Александр Николаевич
  • Клушин Валерий Александрович
  • Андреев Георгий Васильевич
  • Горбунов Эдуард Матвеевич
  • Дайлиде Кястутис Пранович
  • Микешка Юргис Брониславович
SU1135781A1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ 2019
  • Хотинов Владислав Альфредович
  • Фарбер Владимир Михайлович
  • Полухина Ольга Николаевна
  • Морозова Анна Николаевна
  • Селиванова Ольга Владимировна
  • Щапов Геннадий Валерьевич
RU2735308C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КРУПНОГАБАРИТНЫХ ИЗДЕЛИЙ 2004
  • Недоспасов Л.А.
  • Помазан А.А.
  • Лежнин К.В.
  • Пуйко А.В.
  • Немцев С.А.
  • Рязанцев Ю.М.
  • Щавлева Л.А.
  • Дейнеко Леонид Николаевич
  • Величко Александр Григорьевич
  • Большаков Владимир Иванович
  • Волкова Алла Сергеевна
RU2265066C2
Способ закалки молотовых штампов 1983
  • Гоголь Алла Борисовна
  • Маркуца Алла Алексеевна
  • Чикаленко Григорий Андреевич
  • Мальцева Людмила Николаевна
  • Иващенко Юрий Федорович
SU1177365A1
Способ обработки проката из углеродистых и низколегированных сталей 1987
  • Вакуленко Игорь Алексеевич
  • Пирогов Виталий Александрович
  • Бабич Владимир Константинович
SU1588782A1
Способ термической обработки проката 1986
  • Пирогов Виталий Александрович
  • Марцинив Богдан Федорович
  • Вакуленко Игорь Алексеевич
SU1421781A1
Способ получения высокопрочного стального листа 2023
  • Мишнев Роман Владимирович
  • Борисова Юлия Игоревна
  • Ригина Людмила Григорьевна
  • Ткачёв Евгений Сергеевич
  • Борисов Сергей Иванович
  • Юзбекова Диана Юнусовна
  • Дудко Валерий Александрович
  • Гайдар Сергей Михайлович
  • Кайбышев Рустам Оскарович
RU2813064C1
Способ термообработки высоколегированных вторично-твердеющих сталей 1979
  • Контер Лиян Янович
  • Захарова Валентина Леонидовна
  • Буркин Валерий Серафимович
  • Широкова Елена Алексеевна
  • Артамонова Вера Васильевна
  • Калугин Александр Иванович
SU991518A1

Реферат патента 2009 года СПОСОБ ПРОИЗВОДСТВА ТЕРМОМЕХАНИЧЕСКИ ОБРАБОТАННЫХ ГОРЯЧЕКАТАНЫХ ТРУБ

Изобретение относится к трубопрокатному производству. Для повышения ударной вязкости трубу после окончания горячей пластической деформации охлаждают со скоростью, предотвращающей распад аустенита, до температуры, лежащей в интервале мартенситного превращения, а затем охлаждают на воздухе и проводят нагрев в индукторе, питаемом переменным током частотой 50…60 Гц, до температуры 740-760°С в течение 1-1,5 мин, выдерживают в течение 2-4 мин и окончательно охлаждают на воздухе.

Формула изобретения RU 2 353 671 C2

Способ производства термомеханически обработанных горячекатаных труб, включающий горячую пластическую деформацию трубы, охлаждение со скоростью, предотвращающей распад аустенита, и последующее охлаждение на воздухе, отличающийся тем, что охлаждение со скоростью, предотвращающей распад аустенита, осуществляют до температуры, лежащей в интервале мартенситного превращения, а после охлаждения на воздухе трубу нагревают в индукторе, питаемом переменным током частотой 50-60 Гц, до температуры 740-760°С в течение 1-1,5 мин, выдерживают в течение 2-4 мин и окончательно охлаждают на воздухе.

Документы, цитированные в отчете о поиске Патент 2009 года RU2353671C2

СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ МИКРОЛЕГИРОВАННЫХ СТАЛЕЙ 2000
  • Брижан А.И.(Ru)
  • Грехов А.И.(Ru)
  • Жукова С.Ю.(Ru)
  • Кривошеева Антонина Андреевна
  • Марченко Л.Г.(Ru)
  • Москаленко В.А.(Ru)
  • Поповцев Ю.А.(Ru)
  • Пузенко В.И.(Ru)
  • Степашин А.М.(Ru)
  • Тетюева Т.В.(Ru)
  • Шафигин З.К.(Ru)
RU2163643C1
СПОСОБ ПРОКАТКИ ТРУБ С ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКОЙ 1993
  • Усов Владимир Антонович[Ru]
  • Бодров Юрий Владимирович[Ru]
  • Рыбинский Николай Филиппович[Ru]
  • Поповцев Юрий Александрович[Ru]
  • Марченко Леонид Григорьевич[Ru]
  • Шерстнев Сергей Александрович[Ru]
  • Кучеров Евгений Иванович[Ru]
  • Афанасьева Эльза Родионовна[Ru]
  • Жукова Светлана Юльевна[Ru]
  • Кривошеева Антонина Андреевна[Ua]
  • Колмогорцева Людмила Дмитриевна[Ru]
RU2068450C1
СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ ИЗ МАЛОУГЛЕРОДИСТОЙ СТАЛИ 1997
  • Шулежко А.Ф.
  • Шанилов В.А.
  • Поярков В.А.
  • Фурман Ю.С.
  • Погорелова И.Г.
  • Тетюева Т.В.
  • Шевелев А.В.
  • Прохоров Н.Н.
  • Галиченко Е.Н.
  • Медведев А.П.
  • Семериков К.А.
RU2112049C1
СПОСОБ ОХЛАЖДЕНИЯ ТРУБ 2005
  • Бодров Юрий Владимирович
  • Грехов Александр Игоревич
  • Горожанин Павел Юрьевич
  • Гурков Дмитрий Васильевич
  • Жукова Светлана Юльевна
  • Злобарев Владимир Алексеевич
  • Кривошеева Антонина Андреевна
  • Лефлер Михаил Ноехович
  • Марченко Леонид Григорьевич
  • Пумпянский Дмитрий Александрович
  • Пономарев Николай Георгиевич
  • Сохарев Николай Николаевич
  • Усов Владимир Антонович
  • Черных Елена Сергеевна
RU2291905C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ НИЗКО- И СРЕДНЕУГЛЕРОДИСТЫХ НЕЛЕГИРОВАННЫХ И МАЛОЛЕГИРОВАННЫХ СТАЛЕЙ 2003
  • Червинский В.И.
  • Зимин Н.В.
  • Мартынов О.С.
RU2231563C1
US 6136109 A, 24.10.2000.

RU 2 353 671 C2

Авторы

Вьюгина Людмила Анатольевна

Рябов Игорь Евгеньевич

Шулика Игорь Павлович

Топоров Виктор Николаевич

Лобастов Виктор Михайлович

Кочуров Анатолий Васильевич

Даты

2009-04-27Публикация

2007-06-15Подача