METHOD OF MAKING POWER INSULATED-GATE FIELD-EFFECT TRANSISTORS Russian patent published in 2009 - IPC H01L21/336 

Abstract RU 2361318 C2

FIELD: physics.

SUBSTANCE: invention relates to semiconductor technology. The method of making power insulated-gate field-effect transistors involves making a protective coating with a top layer of silicon nitride on the face of the initial silicon nn+ or pp+ - substrate, opening windows in the protective coating, making channel regions of transistor cells in the high-resistivity layer of the substrate and heavily-doped by-pass layers and source regions inside the channel regions using ion implantation of doping impurities into the substrate through windows in the protective coating and subsequent diffusion distribution of implanted impurities. When making by-pass layers, the doping mixture is implanted into the substrate through windows in the protective coating without using additional masking layers. After diffusion redistribution of implanted impurities in by-pass layers on the entire perimetre of windows in the protective coating, selective underetching of lateral ends of the protective coating under silicon nitride is done. The silicon nitride layer is then removed from the entire face of the substrate and source regions of the transistor cells are formed through implantation of doping impurities into the substrate through windows in the protective coating.

EFFECT: invention is aimed at increasing avalanche break down energy, resistance to effect of ionising radiation and functional capabilities of silicon power transistors.

5 dwg, 1 tbl

Similar patents RU2361318C2

Title Year Author Number
HIGH-POWER DMOS-TRANSISTOR MANUFACTURING PROCESS 2000
  • Bachurin V.V.
  • Pekarchuk T.N.
RU2189089C2
MANUFACTURING METHOD OF SHF POWERFUL FIELD LDMOS TRANSISTORS 2008
  • Bachurin Viktor Vasil'Evich
  • Bychkov Sergej Sergeevich
  • Erokhin Sergej Aleksandrovich
  • Pekarchuk Tat'Jana Nikolaevna
RU2364984C1
METHOD OF MAKING TRANSISTOR MICROWAVE LDMOS STRUCTURE 2012
  • Bachurin Viktor Vasil'Evich
  • Korneev Sergej Viktorovich
  • Krymko Mikhail Mironovich
RU2515124C1
MANUFACTURING METHOD OF HIGH-POWER SHF LDMOS TRANSISTORS 2013
  • Bachurin Viktor Vasil'Evich
  • Korneev Sergej Viktorovich
  • Krymko Mikhail Mironovich
  • Romanovskij Stanislav Mikhajlovich
RU2535283C1
METHOD OF MANUFACTURING OF POWERFUL SILICON SHF LDMOS TRANSISTORS WITH MODERNIZED GATE NODE OF ELEMENTARY CELLS 2016
  • Bachurin Viktor Vasilevich
  • Romanovskij Stanislav Mikhajlovich
  • Semeshina Irina Petrovna
RU2639579C2
MANUFACTURING METHOD OF SHF LDMOS TRANSISTORS 2010
  • Bachurin Viktor Vasil'Evich
  • Bychkov Sergej Sergeevich
  • Krymko Mikhail Mironovich
  • Pekarchuk Tat'Jana Nikolaevna
  • Sopov Oleg Veniaminovich
RU2439744C1
POWERFUL MICROWAVE LDMOS TRANSISTOR AND METHOD OF ITS MANUFACTURING 2011
  • Bachurin Viktor Vasil'Evich
  • Bel'Kov Aleksandr Konstantinovich
  • Bychkov Sergej Sergeevich
  • Pekarchuk Tat'Jana Nikolaevna
  • Romanovskij Stanislav Mikhajlovich
RU2473150C1
HIGH-POWER MICROWAVE METAL-INSULATOR- SEMICONDUCTOR TRANSISTOR 2001
  • Bachurin V.V.
  • Bychkov S.S.
RU2195747C1
MANUFACTURING METHOD OF SHF LDMOS TRANSISTORS 2012
  • Bachurin Viktor Vasil'Evich
  • Korneev Sergej Viktorovich
  • Krymko Mikhail Mironovich
RU2498448C1
SHF LDMOS-TRANSISTOR 2007
  • Bachurin Viktor Vasil'Evich
  • Bel'Kov Aleksandr Konstantinovich
  • Bychkov Sergej Sergeevich
  • Pekarchuk Tat'Jana Nikolaevna
RU2338297C1

RU 2 361 318 C2

Authors

Bachurin Viktor Vasil'Evich

Pekarchuk Tat'Jana Nikolaevna

Sopov Oleg Veniaminovich

Dates

2009-07-10Published

2006-07-18Filed