Настоящее изобретение относится к технологии приготовления катализатора на основе оксида алюминия для синтеза меламина из карбамида.
Известны способы получения катализаторов на основе оксида алюминия для синтеза меламина из карбамида. Технология приготовления данных катализаторов заключалась в осаждении гидроксида алюминия при сливе различных растворов, например растворов нитрата алюминия и гидроксида аммония, отмывки осадка от раствора нитрата аммония, пептизации осадка гидроксида алюминия, формовки в двухслойной жидкости, ступенчатой сушки и прокалки гранул /Элвин Б. Стайлз Носители и нанесенные катализаторы. М.: Химия, 1991, 299 с./.
Недостатками данных способов получения являются необходимость отмывки раствора от осадителей, наличие большого количества промывных вод, невысокая удельная поверхность и активность основного компонента катализатора оксида алюминия.
Известен способ приготовления катализатора на основе оксида алюминия для синтеза меламина из карбамида, основанный на взаимодействии гидроксида алюминия с соляной кислотой, коагуляции образовавшегося основного хлорида алюминия в аммиачной воде, введения в полученный коллоидный раствор хлорида алюминия или хлорида железа, формования капельным методом в двух слоях жидкости - в слое керосина и в слое 15%-ной аммиачной воды, сушки гранул, прокалки /А.Ю.Курылев, И.Д.Моисеева, В.М.Померанцев, А.Ф.Туболкин. Износоустойчивый катализатор синтеза меламина, ж. "Катализ в промышленности", №1, 2003/.
Недостатком данного способа получения является наличие нежелательных примесей в соединениях алюминия, большое количество промывных вод и необходимость их утилизации, недостаточная активность и селективность по целевому продукту.
Наиболее близким по технической сущности и достигаемому результату является способ получения катализатора на основе оксида алюминия для синтеза меламина из карбамида путем анодного растворения металлического алюминия в растворе нитрата аммония 2-4 мас.%, фильтрации полученного осадка от соотношения твердое:жидкое (т:ж), равного 1:8, до соотношения 1:4, добавления концентрированной соляной кислоты для получения раствора рН 3-4, введения в полученный раствор 5 об.% раствора хлорида алюминия или раствора хлорида железа 20 мас.%, капельного формования массы со скоростью 2-3 капли в сек вначале в слое керосина толщиной 3-4 см и затем в слое структурирующей жидкости - 25%-ного раствора карбамида, сушки гранул при 40°С в течение 2-3 суток и затем при подъеме температуры со скоростью 10°С/ч до 150°С и выдержки в течение 4 часов, прокалки гранул при подъеме температуры по 20°С/ч от 150°С до 200°С, по 50°С/ч от 150°С до 500°С, по 100°С/ч от 500°С до 900°С и выдержки в течение 4 часов /И.Д.Моисеева. Разработка катализатора и технологии синтеза меламина, автореферат диссертации, Санкт-Петербург, 2002/.
К недостаткам данного способа приготовления относятся недостаточно высокие удельная поверхность и активность катализатора.
Задачей данного изобретения является разработка способа получения катализатора на основе оксида алюминия, позволяющего обеспечить высокую развитую поверхность и активность катализатора.
Поставленная задача достигается тем, что катализатор получают путем анодного растворения металлического алюминия в растворе карбамида 10-40 мас.%, фильтрации полученного осадка от соотношения твердое:жидкое (т:ж), равного 1:8, до соотношения 1:4, введения в полученный раствор в количестве 4-5% объемных раствора хлорида алюминия 70 мас.% или раствора хлорида железа 30 мас.%, капельного формования массы со скоростью 2-3 капли в сек вначале в слое керосина толщиной 3-4 см и затем в слое структурирующей жидкости - 40-50%-ного раствора карбоната аммония, сушки гранул при 40°С в течение 2 суток и затем при подъеме температуры со скоростью с 10°С/ч до 150°С и выдержки в течение 4 часов, прокалки гранул при подъеме температуры по 20°С/ч от 150 до 200°С, по 50°С/ч от 200 до 500°С, по 100°С/ч от 500 до 1000°С и выдержки в течение 4 часов.
Сущность предлагаемого изобретения заключается в следующем.
Использование карбамида 10-40 мас.% в качестве электролита при анодном растворении металлического алюминия приводит к лучшему формированию пористой структуры катализатора, что увеличивает удельную поверхность катализатора. Использование 40-50%-ного раствора карбоната аммония в качестве структурирующей жидкости при формовании массы создает второй слой для формирования с большим буферным объемом для объемного структурирования гранулы. В результате увеличивается удельная поверхность и активность катализатора. Введение в раствор после добавления концентрированной соляной кислоты хлоридов алюминия или железа увеличенной концентрации по сравнению с прототипом влияет на структурообразование твердой фазы, приводит к получению бидисперсной системы, что увеличивает поверхность и активность катализатора. Увеличение температуры прокалки до 1000°С стабилизирует механическую прочность катализатора, сохраняя при этом форму основного компонента в виде γ-Al2O3,что в конечном итоге влияет на удельную поверхность и активность катализатора.
Предлагаемый способ заключается в следующем. В электролизер загружают алюминиевые электроды с концентрацией по основному веществу 99,9 мас.% и заливают электролит - раствор карбамида 10-40 мас.%. Электролиз проводят при силе тока 27А, напряжении 65В. Полученную суспензию гидроксида алюминия при содержании осадка т:ж=1:8 фильтруют до соотношения т:ж = 1:4. В данную суспензию добавляют концентрированную соляную кислоту для доведения полученного коллоидного раствора с рН 7 до рН 3-4. Затем в полученный раствор вводят в количестве 4-5 об.% хлорид алюминия 70 мас.% или хлорид железа 30 мас.%. Далее массу формуют капельным методом. Полученную массу заливали в конусообразный сосуд и через пипетку со скоростью 2-3 капли в секунду подавали в формователь, заполненный жидкостями в два слоя, первый слой - слой керосина толщиной 3-4 см, второй слой - раствор карбоната аммония 40-50 мас.%.
Полученные гранулы сушат при 40°С в течение 2-3 суток и затем при подъеме температуры со скоростью 10°С/ч до 150°С и выдержки в течение 4 часов. Прокалку гранул осуществляют поэтапно при подъеме температуры по 20°С/ч от 150°С до 200°С, по 50°С/ч от 200°С до 500°С, по 100°С/ч от 500°С до 1000°С и выдержки в течение 4 часов.
Приводим конкретные примеры выполнения предлагаемого способа получения катализатора.
Пример 1. В электролизер загружают алюминиевые электроды с концентрацией по основному веществу 99,9 мас.% и заливают 1 л электролита - раствор карбамида 10 мас.%. Электролиз проводят при силе тока 27А, напряжении 65В. Полученную суспензию гидроксида алюминия при содержании осадка т:ж = 1:8 фильтруют до соотношения т:ж = 1:4. В данную суспензию добавляют концентрированную соляную кислоту для доведения полученного коллоидного раствора с рН 7 до рН 3-4. Затем в полученный раствор вводят в количестве 5 об.% хлорид алюминия 70 мас.%. Далее массу формуют капельным методом. Полученную массу заливают в конусообразный сосуд и через пипетку со скоростью 2-3 капли в секунду подают в формователь, заполненный жидкостями в два слоя, первый слой - слой керосина толщиной 3-4 см, второй слой - 500 мл раствора карбоната аммония 50 мас.%. Полученные гранулы сушат при 40°С в течение суток и затем при подъеме температуры со скоростью 10°С/ч до 150°С и выдержки в течение 4 часов. Прокалку гранул осуществляют поэтапно при подъеме температуры по 20°С/ч от 150°С до 200°С, по 50°С/ч от 200°С до 500°С, по 100°С/ч от 500°С до 1000°С и выдержки в течение 4 часов.
В результате получают катализатор состава: γ-Al2O3 - 99,9 об.%. Радиус пор 20-30 Å. Удельная поверхность катализатора 260 м2/г.
Активность катализатора в процессе синтеза меламина из карбамида при температуре 400°С, давлении 0,1 МПа - 1,5 кг/м3мин. Механическая прочность катализатора - 950 кг/см2.
Пример 2. Способ получения, как в примере 1, с тем отличием, что в качестве электролита берут раствор карбамида 25 мас.%, после добавления соляной кислоты в полученный раствор вводят в количестве 5 об.%, хлорид алюминия 70 мас.%, в качестве структурирующей жидкости при формовании берут 500 мл раствора карбоната аммония 50 мас.%.
В результате получают катализатор состава: γ-Al2O3 - 99,9 об.%. Радиус пор 20-25 Å. Удельная поверхность катализатора 265 м2/г.
Активность катализатора в процессе синтеза меламина из карбамида при температуре 400°С, давлении 0,1 МПа - 1,55 кг/м3/мин. Механическая прочность катализатора - 965 кг/см2.
Пример 3. Способ получения, как в примере 1, с тем отличием, что в качестве электролита берут раствор карбамида 40 мас.%, после добавления соляной кислоты в полученный раствор вводят в количестве 4 об.%, хлорид алюминия 70 мас.%, в качестве структурирующей жидкости при формовании берут 500 мл раствора карбоната аммония 40 мас.%.
В результате получают катализатор состава: γ-Al2O3 - 99,9 об.%. Радиус пор 20-25 Å. Удельная поверхность катализатора 270 м2/г.
Активность катализатора в процессе синтеза меламина из карбамида при температуре 400°С, давлении 0,1 МПа - 1,6 кг/м3мин. Механическая прочность катализатора - 980 кг/см2.
Пример 4. Способ получения, как в примере 1, с тем отличием, что после добавления концентрированной соляной кислоты в раствор вводят в количестве 5 об.%, хлорид железа 30 мас.%.
В результате получают катализатор состава: γ-Al2O3 - 98,9 об.%, Fe2О3 - 1,0 об.%.
Радиус пор 30-40 Å. Удельная поверхность катализатора - 250 м2/г.
Активность катализатора в процессе синтеза меламина из карбамида при температуре 400°С, давлении 0,1 МПа - 1,45 кг/м3мин. Механическая прочность катализатора - 970 кг/см2.
Пример 5. Способ получения, как в примере 2, с тем отличием, что после добавления концентрированной соляной кислоты в раствор вводят в количестве 5 об.%, хлорид железа 30 мас.%. В результате получают катализатор состава: γ-Al2O3 - 98,9 об.%, Fe2O3 -1,0 об.%.
Радиус пор 30-40 Å. Удельная поверхность катализатора - 255 м2/г.
Активность катализатора в процессе синтеза меламина из карбамида при температуре 400°С, давлении 0,1 МПа - 1,45 кг/м3мин. Механическая прочность катализатора - 980 кг/см2.
Пример 6. Способ получения, как в примере 3, но после добавления концентрированной кислоты в раствор вводят в количестве 4 об.% хлорид железа 30 мас.%.
В результате получают катализатор состава: γ-Al2O3 - 99.15 об.%, Fe2O3 -0,75 об.%.
Радиус пор 30-40 Å. Удельная поверхность катализатора - 260 м2/г.
Активность катализатора в процессе синтеза меламина из карбамида при температуре 400°С, давлении 0,1 МПа - 1,50 кг/м3мин. Механическая прочность катализатора - 990 кг/см2.
Пример 7 (сравнительный) Способ получения катализатора, как в примере 1, с тем отличием, что после добавления концентрированной соляной кислоты в раствор вводят в количестве 5 об.%, хлорид алюминия 20 мас.%. В результате получают катализатор состава: γ-Al2O3 - 99,9 об.%.
Радиус пор 30-40 Å. Удельная поверхность катализатора - 250 м2/г.
Активность катализатора в процессе синтеза меламина из карбамида при температуре 400°С, давлении 0,1 МПа - 1,40 кг/м3мин. Механическая прочность катализатора - 940 кг/см2.
Пример 8 (сравнительный). Способ получения катализатора, как в примере 4, с тем отличием, что после добавления концентрированной соляной кислоты в раствор вводят в количестве 5 об.%, хлорид железа 20 мас.%. В результате получают катализатор состава: γ-Al2O3 - 99.65 об.%, Fe2O3 - 0,25 об.%.
Радиус пор 30-40 Å. Удельная поверхность катализатора - 240 м2/г. Активность катализатора в процессе синтеза меламина из карбамида при температуре 400°С, давлении 0,1 МПа - 1,40 кг/м3мин. Механическая прочность катализатора - 960 кг/см2.
Пример 9 (по прототипу). В электролизер загружают алюминиевые электроды с концентрацией по основному веществу 99,9 мас.% и заливают 1 л электролита - раствор нитрата аммония 4 мас.%. Электролиз проводят при силе тока 27А, напряжении 65В. Полученную суспензию гидроксида алюминия при содержании осадка т:ж = 1:8 фильтруют до соотношения т:ж = 1:4. В данную суспензию добавляют концентрированную соляную кислоту для доведения полученного коллоидного раствора с рН 7 до рН 3-4. Затем в полученный раствор вводят в количестве 5 об.%, хлорид алюминия 20 мас.%. Далее массу формуют капельным методом. Полученную массу заливают в конусообразный сосуд и через пипетку со скоростью 2-3 капли в секунду подают в формователь, заполненный жидкостями в два слоя, первый слой - слой керосина толщиной 3-4 см, второй слой - 500 мл раствора карбамида 25 мас.%.
Полученные гранулы сушат при 40°С в течение 2 суток и затем при подъеме температуры со скоростью 10°С/ч до 150°С и выдержке в течение 4 часов. Прокалку гранул осуществляют поэтапно при подъеме температуры по 20°С/ч от 150°С до 200°С, по 50°С/ч от 200°С до 500°С, по 100°С/ч от 500°С до 900°С и выдержки в течение 4 часов.
В результате получают катализатор состава: γ-Al2O3 - 99.9 об.%, Радиус пор 30-40 Å. Удельная поверхность катализатора - 180 м2/г.
Активность катализатора в процессе синтеза меламина из карбамида при температуре 400°С, давлении 0,1 МПа - 1,35 кг/м3мин. Механическая прочность катализатора - 970 кг/см2.
Пример 10 (по прототипу). Способ осуществляют по примеру 9 с тем отличием, что после добавления концентрированной соляной кислоты в полученный раствор вводят 5 об.% раствора хлорида железа 20 мас.%.
В результате получают катализатор состава: γ-Al2O3 - 99.65 об.%, Fe2O3 - 0,25 об.%.
Радиус пор 30-40 Å. Удельная поверхность катализатора - 160 м2/г.
Активность катализатора в процессе синтеза меламина из карбамида при температуре 400°С, давлении 0,1 МПа - 1,25 кг/м3мин. Механическая прочность катализатора - 980 кг/см2.
При использовании в качестве электролита карбамида менее 10 мас.% процесс электролиза вялотекущий и сходит на нет, а при более - 40 мас.% происходит интенсивное кипение раствора, начинается эрозия и разрушение электролита с отрывом металлического алюминия. В данном интервале 10-40 мас.% происходит нормально текущий электролиз.
При использовании в качестве структурирующей жидкости карбоната аммония менее 40 мас.% образуются мягкие гранулы, которые не держат шарообразную форму, а более 50 мас.% плотность раствора повышается и данной концентрации необходимо и достаточно для образования структуры катализатора.
В приведенных примерах 7-8 показано влияние уменьшения концентрации хлорида алюминия или хлорида железа на механическую прочность, удельную поверхность и активность катализатора, которые снижаются.
Физико-технические характеристики полученных катализаторов по примерам 1-10 приведены в таблице.
Из приведенных примеров по предлагаемому способу получения катализатора синтеза меламина из карбамида и по прототипу следует, что удельная поверхность катализатора, получаемого по предлагаемому способу, по сравнению с прототипом выше на 30-33%, активность катализатора также превышает известный катализатор на 15-16% при одинаковой механической прочности.
Fe2O3 - 1,0
Fe2O3 - 1,0
Fe2O3 - 0,75
Fe2O3 - 0,25
Fe2O3 - 0,25
Источники информации
1. А.Ю.Курылев, И.Д.Моисеева, В.М.Померанцев, А.Ф.Туболкин. Износоустойчивый катализатор синтеза меламина, ж. "Катализ в промышленности", №1, 2003.
2. А.Ю.Курылев, И.Д.Моисеева, В.М.Померанцев, А.Ф.Туболкин. Износоустойчивый катализатор синтеза меламина, ж. "Катализ в промышленности, №1, 2003.
3. И.Д.Моисеева. "Разработка катализатора и технологии синтеза меламина", автореферат диссертации, Санкт-Петербург, 2002.
название | год | авторы | номер документа |
---|---|---|---|
Алюмооксидный носитель для катализаторов и способ его получения | 2023 |
|
RU2824001C1 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ФТОРИРОВАНИЯ ГАЛОГЕНИРОВАННЫХ УГЛЕВОДОРОДОВ | 2009 |
|
RU2402378C1 |
Катализатор риформинга бензиновых фракций и способ его получения | 2021 |
|
RU2767882C1 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ФТОРИРОВАНИЯ ГАЛОГЕНИРОВАННЫХ УГЛЕВОДОРОДОВ | 2010 |
|
RU2431524C1 |
СПОСОБ ПОЛУЧЕНИЯ НОСИТЕЛЕЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ ДЛЯ КАТАЛИЗАТОРОВ ПРОЦЕССОВ НЕФТЕПЕРЕРАБОТКИ | 2021 |
|
RU2766506C1 |
КАТАЛИЗАТОР, СПОСОБ ПРИГОТОВЛЕНИЯ НОСИТЕЛЯ, СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ | 2011 |
|
RU2472585C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА | 2015 |
|
RU2575638C1 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И АКТИВАЦИИ И СПОСОБ ФТОРИРОВАНИЯ ГАЛОГЕНИРОВАННЫХ УГЛЕВОДОРОДОВ | 2007 |
|
RU2322291C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ | 1991 |
|
RU2026111C1 |
КАТАЛИЗАТОР ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА | 2015 |
|
RU2575637C1 |
Изобретение относится к технологии приготовления катализатора на основе оксида алюминия для синтеза меламина из карбамида. Описан способ получения катализатора на основе оксида алюминия, включающий анодное растворение металлического алюминия в растворе электролита - карбамида 10-40 мас.%, фильтрацию осадка, добавление концентрированной соляной кислоты, введение в полученный раствор 4-5 об.% хлорида алюминия 70 мас.% или хлорида железа 30 мас.%, капельное формование массы в гранулы в слое керосина и затем в слое структурирующей жидкости - растворе карбоната аммония 40-50 мас.%, сушку, прокалку до 1000°С. Технический результат - получение катализатора с высокой удельной поверхностью и активностью. 1 табл.
Способ получения катализатора на основе оксида алюминия для синтеза меламина из карбамида, включающий анодное растворение металлического алюминия в растворе электролита, фильтрацию осадка, добавление концентрированной соляной кислоты, введение в полученный раствор хлоридов алюминия или железа, капельное формование массы в гранулы в слое керосина и затем в слое структурирующей жидкости, сушку гранул, прокалку, отличающийся тем, что в качестве электролита используют карбамид 10-40 мас.%, после добавления концентрированной соляной кислоты в раствор вводят в количестве 4-5 об.% хлорид алюминия 70 мас.% или хлорид железа 30 мас.%, в качестве структурирующей жидкости при формовании вводят раствор карбоната аммония 40-50 мас.%, прокалку гранул осуществляют до 1000°С.
Моисеева И.Д | |||
Разработка катализатора и технологии синтеза меламина: Автореферат диссертации | |||
- Пб., 2002 | |||
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ОКСИДА АЛЮМИНИЯ | 1998 |
|
RU2135411C1 |
Способ получения активного оксида алюминия | 1983 |
|
SU1355120A3 |
СПОСОБ ПОЛУЧЕНИЯ γ -ОКСИДА АЛЮМИНИЯ | 1991 |
|
RU2038304C1 |
Способ холодной переработки китового покровного сала | 1956 |
|
SU108968A1 |
Авторы
Даты
2009-07-20—Публикация
2007-12-26—Подача