Изобретение относится к области аналитической химии, а именно к определению элементного состава различных веществ.
Известен способ определения азота по методу Дюма. Этот способ, основанный на принципе окисления образца при температуре около 900°С в потоке кислорода и газа-носителя, реализован, например, в анализаторе Rapid N фирмы ELEMENTAR Analysensysteme GmbH (Германия) и применяется, в частности, на пивоваренных заводах для определения белкового азота в ячмене, а также для анализа кормов или пищевых продуктов. (См. также рекламный листок НПО "Приборинформ", г.Ростов-на-Дону.)
В качестве ближайшего аналога выбран способ определения азота по методу Дюма, описанный в проспекте фирмы СЕ INSTRUMENTS (Италия). Способ осуществляют следующим образом. Образец подают из автосамплера в первый реактор, через который постоянно продувают газ-носитель гелий. Переключают поток газа на кислород и сжигают образец при температуре порядка 900°С. При этом образуются нежелательные продукты горения и оксиды азота, которые затем необходимо восстанавливать во втором реакторе при помощи меди или вольфрама до элементарного азота N2. Далее азот переносится газом-носителем в детектор по теплопроводности для количественного определения. Компьютер автоматически вычисляет процентное содержание азота.
Известный способ отличается сложностью выполнения в связи с тем, что необходим второй реактор для восстановления продуктов распада. Кроме того, необходима подача кислорода в качестве газа-реактанта для окисления.
Другим недостатком известного способа является недостаточная точность элементного анализа вещества из-за образования нежелательных продуктов горения.
Задачей настоящего изобретения является устранение указанных недостатков, а именно упрощение способа и повышение точности элементного анализа вещества.
Кроме того, предлагаемый способ позволяет определять, кроме азота, ряд других элементов, например водород, углерод.
Указанная задача решается тем, что в способе элементного анализа вещества, включающем ввод пробы в высокотемпературный реактор, в котором происходит разложение пробы, продукты распада потоком инертного газа-носителя пропускают через слой реагента-окислителя при температуре от 200 до 600°С, при этом целевые продукты образуются непосредственно в реакторе и затем разделяются и направляются для количественного определения на аналитический прибор.
Технический результат достигается за счет того, что по предлагаемому способу кислород в реактор не вводится, целевые продукты образуются непосредственно в этом реакторе, причем при более низкой температуре, и затем разделяются и направляются для количественного определения на аналитический прибор. Еще одним преимуществом способа является простота регенерации реагента-окислителя, поскольку осуществляется кислородом воздуха при его рабочей температуре от 200 до 600°С и может проводиться на этапе пробоподготовки.
Предлагаемый способ поясняется следующими примерами элементного анализа.
Пример 1 (элементный анализ глицина: Н, С, N). Кварцевую капсулу с навеской глицина вводят в реактор, нагретый до 850°С, где происходит разложение пробы. Продукты распада в потоке инертного газа-носителя (аргон) пропускают через реагент-окислитель (NiO, Сr2O3) при температуре 500°С. Образовавшиеся азот, диоксид углерода и воду разделяют на хроматографической колонке и регистрируют детектором по теплопроводности. После обработки данных количественно определяют азот, углерод (по диоксиду углерода) и водород (по воде).
Пример 2 (определение азота в комбикорме). Кварцевую капсулу с навеской комбикорма вводят в реактор, нагретый до 850°С, где происходит разложение пробы. Продукты распада в потоке инертного газа-носителя (аргон) пропускают через реагент-окислитель (NiO) при температуре 500°С. Образовавшиеся в результате окисления диоксид углерода и воду удаляют аскаритом. Далее азот регистрируют детектором по теплопроводности. После обработки данных количественно определяют азот.
Пример 3 (определение водорода и углерода в гексане). Фиксированный объем гексана вводят в реактор, нагретый до 650°С, где происходит разложение пробы. Продукты распада в потоке инертного газа-носителя (аргон) пропускают через реагент-окислитель (Сr2О3) при температуре 550°С. Образовавшиеся диоксид углерода и воду разделяют на хроматографической колонке и регистрируют детектором по теплопроводности. После обработки данных количественно определяют углерод (по диоксиду углерода) и водород (по воде).
название | год | авторы | номер документа |
---|---|---|---|
Способ определения азота, углерода, водорода и серы в органических соединениях | 1989 |
|
SU1698752A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕМЕНТНОГО СОСТАВА ПОЛИМЕРОВ И ОЛИГОМЕРОВ НА ОСНОВЕ 3,3 БИС (АЗИДОМЕТИЛ) ОКСЕТАНА (БАМО) МЕТОДОМ ИК-СПЕКТРОСКОПИИ | 2013 |
|
RU2537387C2 |
СПОСОБ ФИКСАЦИИ СЕРЫ ИЗ ГЕКСАФТОРИДА СЕРЫ | 1998 |
|
RU2145570C1 |
ГАЗОХРОМАТОГРАФИЧЕСКАЯ СИСТЕМА ДЛЯ АНАЛИЗА ОТРАБОТАННЫХ ГАЗОВ АВТОМОБИЛЕЙ | 2007 |
|
RU2356045C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАКИСИ АЗОТА, УГЛЕРОДА МОНООКСИДА, УГЛЕРОДА ДИОКСИДА, КИСЛОРОДА И АЗОТА В ЛЕКАРСТВЕННОМ ПРЕПАРАТЕ "АЗОТА ЗАКИСЬ, ГАЗ СЖАТЫЙ" | 2024 |
|
RU2816826C1 |
СПОСОБ СИНТЕЗА АКРИЛОНИТРИЛА ИЗ ГЛИЦЕРИНА | 2008 |
|
RU2471774C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОРОДА В ТОПЛИВНЫХ ТАБЛЕТКАХ ИЗ ДВУОКИСИ УРАНА | 1999 |
|
RU2173486C2 |
СПОСОБ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ФТОРА, ХЛОРА, БРОМА, ЙОДА, СЕРЫ И ФОСФОРА В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ | 2008 |
|
RU2395806C2 |
Устройство для исследования термической, термоокислительной и гидролитической деструкции полимерных материалов и способ его осуществления | 2018 |
|
RU2693738C1 |
СПОСОБ ГАЗОХРОМАТОГРАФИЧЕСКОГО ОПРЕДЕЛЕНИЯ ЗАКИСИ АЗОТА В ГАЗАХ | 2003 |
|
RU2226688C1 |
Изобретение относится к области анализа. Способ предусматривает введение образца в высокотемпературный реактор, разложение его на компоненты, окисление компонентов и последующее их количественное определение. Отличие способа состоит в том, что продукты распада в потоке инертного газа-носителя пропускают через слой реагента-окислителя в диапазоне температур от 200 до 600°С. При этом целевые продукты образуются непосредственно в реакторе и затем разделяются и направляются для количественного определения на аналитический прибор. Технический результат состоит в упрощении способа и в повышении точности элементного анализа вещества.
Способ элементного анализа вещества, включающий ввод пробы в высокотемпературный реактор, в котором происходит разложение пробы, отличающийся тем, что продукты распада потоком инертного газа-носителя пропускают через слой реагента-окислителя при температуре от 200 до 600°С, при этом целевые продукты образуются непосредственно в реакторе и затем разделяются и направляются для количественного определения на аналитический прибор.
Способ определения азота, углерода, водорода и серы в органических соединениях | 1989 |
|
SU1698752A1 |
Способ количественного определения углерода, водорода и азота в органических соединениях | 1986 |
|
SU1691730A1 |
СПОСОБ ХРОМАТОГРАФИЧЕСКОГО ОПРЕДЕЛЕНИЯ УГЛЕРОДА, ВОДОРОДА И АЗОТА В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ | 0 |
|
SU204014A1 |
СПОСОБ ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ УГЛЕРОДА, ВОДОРОДА И АЗОТА | 0 |
|
SU191877A1 |
Авторы
Даты
2011-02-27—Публикация
2009-07-22—Подача