Изобретение относится к области химической технологии, экологии, а более подробно к способам утилизации отходов полимеров.
Промышленные синтетические полимеры являются весьма устойчивыми химическими соединениями и могут сохраняться в окружающей среде в течение многих десятков лет без заметного химического разрушения (Зезин А.Б. Полимеры и окружающая среда. // Соросовский образовательный журнал. 1996. №2. С.57-64). Для рециклинга или утилизации отходов полимерных материалов применяется много методов, которые можно разделить на недеструктивные и деструктивные превращения (С.А.Вольфсон. Вторичная переработка полимеров. Высокомолекулярные соединения, Серия С, 2000, 42, 11, 2000-2014).
К недеструктивным превращениям полимерных материалов и их отходов относят переработку использованных ранее полимеров путем их гранулирования (механическая переработка), химической модификации с целью их повторного использования.
К деструктивным превращениям полимерных материалов относят переработку использованных ранее полимеров путем их деления макрочастиц на фракции с меньшей массой частиц или на мономеры (Вельгош З., Полачек Й., Маховска С. // Пластические массы. 1998. №1. С.41-43) с целью получения сырья для производства других продуктов или энергии.
Известен способ деполимеризации отходов полиуретана путем его обработки активным органическим растворителем с последующим использованием полученного раствора (Горбат Т.В., Журавлев В.А., Онорина Л.Э., Кожинова Т.В., Ракк И.А. // Пластические массы. 2001. №4. С.39-40).
Известен способ превращений полиимидной пленки путем щелочного их гидролиза до получения исходных мономеров - диаминов и тетракарбоновых кислот (Пат. РФ №590317, C08J 11/00, 30.01.19787).
Известен способ переработки вторичного полиэтилентерефталата с получением диметилтерефталата в процессе метанолиза или терефталевой кислоты и этиленгликоля в гидролитическом процессе (Кузнецов С.В. // Пластические массы. 2001. №9. С.3-7).
Известен способ высокотемпературной переработки полимерных отходов (полиэтилен, полипропилен, полистирол), который заключается в их предварительном смешении, растворении в нефтяной дистиллированной фракции с температурой кипения 30-540°С при соотношении 1:5-1:20 и деструкции в реакторе при 500-520°С, атмосферном давлении в присутствии катализатора сложного состава (Карнаухова Л.И., Гузева Л.И. // Пластические массы. 1999. №9. С.37-38). При этом получают мас.% на исходное сырье: газ до С4 включительно (12.0); бензин Н.К. - 195°С (38.0); дизельная фракция 195-350°С (35.4); остаток > 350°С (12.5); кокс (2.0).
К основным недостаткам вышеперечисленных способов переработки и превращений полимерных материалов и их отходов следует отнести селективность способа к типу полимера, использование сильных кислот или щелочей в качестве растворителей или получение кислот в продуктах превращений, значительная дороговизна процессов деполимеризации, большие времена, требующиеся для достижения высокой степени превращения, сложный подготовительный процесс, сложные методы разделения продуктов превращений.
Известен способ высокотемпературной обработки отходов полиметилметакрилата и политетрафторэтилена (Пат. РФ №502916, C08F 11/00, 15.02.1976), принятый за прототип. По этому способу разложение полимеров проводят в замкнутом объеме при температурах до 800°С. Продукты разложения в первом случае содержат до 95% метилметакрилата, пропан, этилен и углекислый газ. При разложении политетрафторэтилена - 87% тетрафторэтилена, 12% октофторпропана и 1% четырефтористого углерода.
К главным недостаткам способа обработки отходов полимеров в известном способе следует отнести необходимость создания высоких температур (>750°С) нагрева полимера, необходимость проведения процесса в инертной среде или вакууме, необходимость создания хорошего контакта нагревательной поверхности и полимера.
Предлагаемое изобретение решает задачу высокоэффективной, простой по реализации утилизации широкого класса отходов вышеперечисленных полимерных материалов при их превращениях в сверхкритических низших спиртах в гомогенные жидкие соединения без применения или образования вредных, токсичных соединений и веществ.
Технический результат - деполимеризация и превращение отходов полимерных материалов в гомогенные жидкие соединения с высокой степенью конверсии за малые времена контакта.
Полученные в результате деполимеризации отходов полимерных материалов гомогенные жидкие соединения могут быть использованы как высококалорийное топливо для применения в энергетических установках.
Основные идеи практической реализации способа утилизации широкого класса отходов твердых полимерных материалов, предложенного в настоящем изобретении, заключаются в том, что процесс разложения полимеров осуществляют в низших спиртах-растворителях (С1-С3), находящихся в сверхкритическом состоянии, таких как: сверхкритический метиловый спирт, сверхкритический этиловый спирт, сверхкритический пропиловый спирт, сверхкритический изопропиловый спирт, в области давлений 100-270 атм и при температурах 200-260°С в реакторе закрытого типа - автоклаве с перемешиванием.
Утилизации подвергают отходы следующих классов полимеров: полисульфоны, полифениленсульфиды, полиэфирсульфоны, полиэфиримиды, полифенилсульфоны, полиацетали.
Преимущества предложенного способа утилизации отходов полимеров заключаются в следующем. Термическим превращениям в сверхкритических низших спиртах могут быть подвергнуты практически все полимеры, независимо от их состава, наполнителей и примесей, а также характера и вида отходов без специальной обработки. Не возникает в этом случае и необходимости предварительной сортировки отходов, их промывки или очистки от других органических веществ.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1
Отходы из твердого полимера - полисульфона без какой-либо предварительной обработки подвергают механическому дроблению (резки) на куски-гранулы с эффективным размером 5-10 мм. Гранулы полисульфона Udel 3500 помещают в реактор-автоклав с перемешиванием с жидким изопропиловым спиртом. Реактор закрывают и нагревают до температуры 260°С. При этом давление поднимают в первые 10-15 мин до 110 атм, затем до 190 атм вследствие значительного газовыделения, вызванного деструктивными превращениями полимера. После 1 ч реакции сверхкритический раствор дросселируют в камеру низкого давления.
Конечный продукт представляет собой гомогенный жидкий раствор желтого цвета с запахом бензина. Наличия твердой фазы не обнаружено.
Пример 2
Отходы из твердого полимера - полиэфиримида без какой-либо предварительной обработки подвергаются механическому дроблению (резки) на куски-гранулы с эффективным размером 5-10 мм. Гранулы полиэфиримида Ultem 100 помещают в реактор-автоклав с перемешиванием с жидким изопропиловым спиртом. Реактор закрывают и нагревают до температуры 260°С. При этом давление поднимают в первые 10-15 мин до 100 атм, затем до 130 атм вследствие газовыделения, вызванного деструктивными превращениями полимера. После 1 ч реакции сверхкритический раствор дросселируют в камеру низкого давления.
Конечный продукт представляет собой гомогенный жидкий раствор прозрачно желтого цвета с запахом бензина. Наличия твердой фазы не обнаружено. Раствор через 5 дней на свету приобретает темно-коричневый цвет.
Пример 3
Отходы из твердого полимера - полиэфирсульфона без какой-либо предварительной обработки подвергают механическому дроблению (резки) на куски-гранулы с эффективным размером 5-10 мм. Гранулы полиэфирсульфона помещают в реактор-автоклав с перемешиванием с жидким изопропиловым спиртом. Реактор закрывают и нагревают до температуры 260°С. При этом давление поднимают в первые 10-15 мин до 110 атм, затем до 140 атм вследствие газовыделения, вызванного деструктивными превращениями полимера. После 1 ч реакции сверхкритический раствор дросселируют в камеру низкого давления.
Конечный продукт представляет собой жидкий раствор желтого цвета с запахом бензина и наличием твердых частиц белого цвета, находящихся во взвешенном состоянии в растворе.
Пример 4
Отходы из твердого полимера - полифенилсульфона без какой-либо предварительной обработки подвергают механическому дроблению (резки) на куски-гранулы с эффективным размером 5-10 мм. Гранулы полифенилсульфона помещают в реактор-автоклав с перемешиванием с жидким изопропиловым спиртом. Реактор закрывают и нагревают до температуры 260°С. При этом давление поднимают в первые 10-15 мин до 110 атм, затем до 210 атм вследствие значительного газовыделения вызванного деструктивными превращениями полимера. После 1 ч реакции сверхкритический раствор дросселируют в камеру низкого давления.
Конечный продукт представляет собой гомогенный жидкий раствор прозрачно-желтого цвета с запахом бензина. Наличия твердой фазы не обнаружено.
Пример 5
Отходы из твердого полимера - полиацеталя без какой-либо предварительной обработки подвергают механическому дроблению (резки) на куски-гранулы с эффективным размером 5-10 мм. Гранулы полиацеталя помещают в реактор-автоклав с перемешиванием с жидким пропиловым спиртом. Реактор закрывают и нагревают до температуры 260°С. При этом давление поднимают в первые 10-15 мин до 100 атм, затем до 150 атм вследствие газовыделения, вызванного деструктивными превращениями полимера. После 1 ч реакции сверхкритический раствор дросселируют в камеру низкого давления.
Конечный продукт представляет собой гомогенный жидкий раствор прозрачно-желтого цвета с запахом бензина. Наличия твердой фазы не обнаружено.
Пример 6
Отходы из твердого полимера - полифениленсульфида без какой-либо предварительной обработки подвергают механическому резки на куски с эффективным размером 5-10 мм. Полифениленсульфид в виде пленки помещают в реактор-автоклав с перемешиванием с жидким этиловым спиртом (8% воды, 92% - этиловый спирт). Реактор закрывают и нагревают до температуры 280°С. При этом давление поднималось в первые 10-15 мин до 180 атм, затем до 330 атм вследствие сильного газовыделения, вызванного деструктивными превращениями полимера. После 1 ч реакции сверхкритический раствор дросселируют в камеру низкого давления.
Конечный продукт представляет собой гомогенный жидкий раствор прозрачно-желтого цвета с запахом дизельного топлива. Наличия твердой фазы не обнаружено.
Хром-масс-спектрометрический анализ жидкости показывает, что в ней содержатся органические соединения в виде двух или трех колец, а также соединения с -ОН группой, два кольца с -S-соединением и т.д. Сделан вывод, что спирт активно участвует в реакциях с дефрагментированным полимером, который полностью разлагается, что подтверждается отсутствием твердых частиц полимера в продуктах дросселирования.
Пример 7
Отходы из твердого полимера - полиэфирсульфона без какой-либо предварительной обработки подвергают механическому дроблению (резки) на куски-гранулы с эффективным размером 5-10 мм. Гранулы полиэфирсульфона помещают в реактор-автоклав с перемешиванием с жидким метиловым спиртом. Реактор закрывают и нагревают до температуры 260°С. При этом давление поднимают в первые 10-15 мин до 110 атм, затем до 140 атм вследствие газовыделения, вызванного деструктивными превращениями полимера. После 1 ч реакции сверхкритический раствор дросселируют в камеру низкого давления.
Конечный продукт представляет собой жидкий раствор желтого цвета с запахом бензина и наличием твердых частиц белого цвета, находящихся во взвешенном состоянии в растворе.
Примеры демонстрируют, что обработка всех исследуемых отходов полимеров в сверхкритических низших спиртах проходит со 100% степенью превращения и приводит к образованию газовых и гомогенных жидких продуктов.
Как видно из текста и примеров, предлагаемый способ решает задачу высокоэффективного превращения и утилизации широкого класса отходов полимерных материалов в экологически чистые и востребованные гомогенные жидкие продукты.
Способ может быть положено в основу новых технологий, предназначенных для утилизации отходов вышеперечисленных полимерных материалов.
название | год | авторы | номер документа |
---|---|---|---|
Способ переработки отходов карбоцепных термопластов | 2018 |
|
RU2701935C1 |
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНЫХ ДИЭФИРОВ ТЕРЕФТАЛЕВОЙ КИСЛОТЫ И ДИОЛОВ СЛОЖНЫХ ПОЛИЭФИРОВ | 1993 |
|
RU2103257C1 |
СПОСОБ ПОЛУЧЕНИЯ РЕДИСПЕРГИРУЕМЫХ В ВОДЕ ПОЛИМЕРНЫХ ПОРОШКОВ | 2015 |
|
RU2618253C2 |
СПОСОБ ПОЛУЧЕНИЯ РЕДИСПЕРГИРУЕМОГО В ВОДЕ ПОЛИМЕРНОГО ПОРОШКА | 2015 |
|
RU2594215C1 |
СПОСОБ ПОДГОТОВКИ К ПЕРЕРАБОТКЕ ПОЛИМЕРНЫХ ОТХОДОВ | 2004 |
|
RU2299896C2 |
СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ ДИАМИНОВ, ТРИАМИНОВ ИЗ АРОМАТИЧЕСКИХ НИТРОСОЕДИНЕНИЙ | 2013 |
|
RU2549618C1 |
СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ И ПОЛИМЕРНЫХ ОТХОДОВ | 2011 |
|
RU2496587C2 |
СПОСОБ ПОЛУЧЕНИЯ 1,5,8-ПАРА-МЕНТАТРИЕНА | 2013 |
|
RU2522434C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ИЗОМЕРИЗАЦИИ АЛЬФА-ПИНЕНА В СВЕРХКРИТИЧЕСКИХ ФЛЮИДАХ | 2006 |
|
RU2300514C1 |
СПОСОБ ПОЛУЧЕНИЯ α-КАМФОЛЕНОВОГО СПИРТА | 2011 |
|
RU2461540C1 |
Изобретение относится к области химической технологии, экологии, в частности к способу утилизации отходов полимеров. Способ утилизации отходов полимеров осуществляют в низших спиртах-растворителях, находящихся в сверхкритическом состоянии, в реакторах закрытого типа, при температуре и давлении, превышающих критические значения для исходной реакционной смеси. В качестве низшего спирта используют метиловый спирт, этиловый спирт, пропиловый спирт, изопропиловый спирт. Процесс осуществляют в области давления 100-270 атм и при 200-260°С в реакторе-автоклаве с перемешиванием. Способ позволяет провести деполимеризацию и превращение полимерных материалов в гомогенные жидкие соединения с высокой степенью конверсии за малые времена контакта. 5 з.п. ф-лы.
1. Способ утилизации отходов полимеров, отличающийся тем, что утилизацию отходов полимеров осуществляют в низших спиртах-растворителях, находящихся в сверхкритическом состоянии, в реакторах закрытого типа при температуре и давлении, превышающих критические значения для исходной реакционной смеси.
2. Способ по п.1, отличающийся тем, что в качестве низшего спирта используют метиловый спирт.
3. Способ по п.1, отличающийся тем, что в качестве низшего спирта используют этиловый спирт.
4. Способ по п.1, отличающийся тем, что в качестве низшего спирта используют пропиловый спирт.
5. Способ по п.1, отличающийся тем, что в качестве низшего спирта используют изопропиловый спирт.
6. Способ по п.1, отличающийся тем, что его осуществляют в области давления 100-270 атм и при температуре 200-260°С в реакторе-автоклаве с перемешиванием.
Способ высокотемпературной обработки отходов полимеров | 1974 |
|
SU502916A1 |
СПОСОБ ПЕРЕРАБОТКИ ПЛАСТМАССОВОГО УТИЛЬСЫРЬЯ И ПЛАСТМАССОВЫХ ОТХОДОВ | 1994 |
|
RU2127296C1 |
СПОСОБ ХИМИЧЕСКОЙ РЕУТИЛИЗАЦИИ ОТРАБОТАННОГО ПОЛИЭТИЛЕНТЕРЕФТАЛАТА | 2001 |
|
RU2263658C2 |
СПОСОБ УТИЛИЗАЦИИ ОТХОДОВ КАРБОЦЕПНЫХ ТЕРМОПЛАСТОВ С ПОЛУЧЕНИЕМ ТОНКОДИСПЕРСНОГО ПОРОШКА | 2001 |
|
RU2210577C2 |
СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ ПРОМЫШЛЕННЫХ И БЫТОВЫХ ПОЛИМЕРНЫХ ОТХОДОВ | 1997 |
|
RU2110535C1 |
Авторы
Даты
2011-09-27—Публикация
2009-10-14—Подача