СПОСОБ ОХЛАЖДЕНИЯ РАБОЧИХ ВАЛКОВ СТАНОВ ГОРЯЧЕЙ ПРОКАТКИ Российский патент 2012 года по МПК B21B27/10 

Описание патента на изобретение RU2457913C1

Изобретение относится к прокатному производству, конкретно к охлаждению рабочих валков, и может быть использовано при горячей прокатке листов и полос.

Охлаждение валков является неотъемлемой частью технологии горячей прокатки. Известно, что одна из основных проблем преждевременного выхода валков из строя - термическое изнашивание в результате резкого перепада температуры от момента контакта валка с горячей полосой и до выхода ее из очага деформации.

Известен способ охлаждения прокатных валков и проката, включающий предварительное смешивание охлаждающей жидкости с воздухом и подачу водовоздушной смеси на охлаждаемую поверхность при давлении воздуха 0,1…1,5 атм, а исходящее давление жидкости 0,05-0,6 атм (см. авт.св. СССР 651862, МПК В21В 27/06, 1979).

Недостатком известного способа является недостаточное количество подаваемой водовоздушной смеси на поверхность валков, что приводит к их перегреву и термическому разрушению. Помимо этого, использование заявляемого соотношения давления воды и воздуха является неприемлемым при прокатке металла в черновых и чистовых клетях стана, где температура и скорость прокатки имеют существенные различия.

Наиболее близким аналогом является способ охлаждения рабочего валка стана горячей прокатки, включающий подачу водовоздушной смеси на участок поверхности бочки в зоне выхода из очага деформации, отличающийся тем, что водовоздушную смесь создают распылением струи воды сжатым воздухом под давлением 1-4 МПа, при этом удельный расход воды устанавливают равным 10-90 м3/(м2·ч), (см. патент РФ №2183143, кл. В21В 27/10).

Использование известного способа не позволяет определить рациональное количество водовоздушной смеси, необходимой для подачи на каждую клеть стана в зависимости от технологических параметров процесса прокатки: Т - температура поверхности прокатываемого металла, °С; R - радиус валка, мм; V - скорость прокатки, м/с; обжатия в клети, %. Данные параметры влияют на режимы нагрева и охлаждения прокатных валков. Таким образом, отсутствие зависимостей между количеством водовоздушной смеси и технологическими параметрами процесса прокатки приводит к перегреву рабочих валков, образованию сетки трещин разгара и термическому изнашиванию поверхности валка.

Технической задачей, на решение которой направлено изобретение, является снижение перегрева рабочих валков, уменьшение образования сетки трещин разгара, снижение термического изнашивания.

Поставленная техническая задача решается тем, что в известном способе охлаждения рабочего валка стана горячей прокатки, включающем подачу водовоздушной смеси на участок поверхности бочки в зоне выхода из очага деформации, согласно изменению, удельный расход воды определяется из соотношения

где Т - температура поверхности прокатываемого металла, °С;

R - радиус валка, мм;

V - скорость прокатки, м/с;

K - эмпирический коэффициент, зависящий от обжатия в клети: при обжатии ≤30% коэффициент k=(7…5], а при обжатии >30% коэффициент k=(1,5…5],

при этом давление воздуха, необходимое для образования водовоздушной смеси, определяется соотношением P=Qm,

где Q - удельный расход воды, м3/ч;

m - эмпирический коэффициент, зависящий от обжатия в клети: при обжатии ≤30% коэффициент m=(0,2…0,3], а при обжатии >30% коэффициент m=(0,1…0,2].

Все вышеперечисленные зависимости получены в результате обработки опытных данных и являются эмпирическими. Коэффициенты k и m являются безразмерными.

Сущность технического решения заключается в том, что для стабильного равномерного охлаждения валков водовоздушной смесью необходимо подавать определенное количество охладителя и воздуха на каждую прокатную клеть станов горячей прокатки, при этом необходимо учитывать технологические параметры процесса прокатки: Т - температура поверхности прокатываемого металла, °С; R - радиус валка, мм; V - скорость прокатки, м/с; обжатия в клети, %.

Помимо этого, подаваемая к валку водовоздушная смесь эффективно подавляет пылевидную окалину, которую валки отрывают от полосы и выбрасывают в атмосферу в зоне выхода из очага деформации. Окалина, осажденная водовоздушной смесью, оседает на полосе и в дальнейшем смывается с нее струями охлаждающей воды.

Промышленные испытания проводились на широкополосном стане горячей прокатки при различных режимах прокатки. Некоторые параметры опытной прокатки, при которых были достигнуты наилучшие результаты, приведены в таблице 1.

Экспериментально установлено, что эмпирический коэффициент k зависит от обжатия в клети: при этом при обжатии ≤30% коэффициент k=(5…7], а при обжатии >30% коэффициент k=(1,5…5]; а эмпирический коэффициент m, также зависящий от обжатия в клети, при этом при обжатии ≤30% коэффициент m=(0,2…0,3], а при обжатии >30% коэффициент m=(0,1…0,2].

Сравнительный анализ результатов прокатки, проведенной по опытной технологии и взятой в качестве ближайшего аналога, приведен в таблице 2. В качестве оценки показателей качества полученных результатов использовался параметр эффективности «Э», учитывающий стойкость прокатных валков, которая оценивалась по величине съема валков при шлифовании до и после проведения эксперимента. Полученные результаты показали, что стойкость валков при использовании предлагаемого способа охлаждения в среднем на 12…19% выше, чем при использовании известного способа, за счет улучшения теплового режима прокатных валков и исключения их локального перегрева.

Таким образом, опыты подтвердили приемлемость заявляемого способа для решения поставленной задачи и его преимущества перед известной технологией.

При реализации данного способа необходимо установить ряд технологический параметров прокатки в каждой клети: Т - температура поверхности прокатываемого металла, °С; R - радиус валка, мм; V - скорость прокатки, м/с; обжатия в клети, %.

Пример конкретного выполнения

На выходной стороне последней 6-й клети черновой группы непрерывного широкополосного стана 2000 горячей прокатки устанавливают форсунки для создания водовоздушной смеси. Рабочие валки клети имеют радиус R=640 мм; прокатываемый металл: сталь 3сп, ширина проката 1600 мм, температура поверхности прокатываемого металла Т=1050°С; скорость прокатки М=3 м/с; обжатия при прокатке 35%.

К форсункам подают воду и сжатый воздух под давлением. Образующуюся на выходе форсунок водовоздушную смесь подают на участки поверхности бочек валков в зоне выхода из очага деформации. Удельный расход воды устанавливают равным заявляемому соотношению давление воздуха, необходимое для образования водовоздушной смеси, также устанавливают равным заявляемому соотношению Р=Qm.

Результаты вычислений дают следующие значения.

При заданных технологических параметрах прокатки выбираем эмпирические коэффициенты k=4,6, m=0,7.

Удельный расход воды

давление воздуха P=1600,25=3,5 атм.

Остальные зоны рабочих валков охлаждают из спрееров сплошными струями воды.

Похожие патенты RU2457913C1

название год авторы номер документа
СПОСОБ ОХЛАЖДЕНИЯ РАБОЧЕГО ВАЛКА СТАНА ГОРЯЧЕЙ ПРОКАТКИ 2000
  • Скороходов В.Н.
  • Настич В.П.
  • Чернов П.П.
  • Пименов А.Ф.
  • Тишенко А.Д.
  • Мазур С.И.
  • Трайно А.И.
  • Пименов В.А.
RU2183143C2
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ ПОЛОС С ОДНОСТОРОННИМ РИФЛЕНИЕМ 2010
  • Торопов Сергей Сергеевич
  • Смирнов Владимир Сергеевич
  • Савиных Анатолий Федорович
  • Трайно Александр Иванович
  • Русаков Андрей Дмитриевич
RU2445179C2
СПОСОБ ПОВЫШЕНИЯ ДОЛГОВЕЧНОСТИ ПРОКАТНЫХ ВАЛКОВ ШИРОКОПОЛОСОВЫХ СТАНОВ ГОРЯЧЕЙ ПРОКАТКИ 2004
  • Попов В.А.
  • Скорохватов Н.Б.
  • Глухов В.В.
  • Смирнов В.С.
  • Синев О.В.
  • Сычев С.Ю.
  • Панкратов А.В.
RU2254180C1
СПОСОБ ПРОКАТКИ ТОЛСТЫХ ЛИСТОВ НА РЕВЕРСИВНОМ СТАНЕ 2012
  • Салганик Виктор Матвеевич
  • Денисов Сергей Владимирович
  • Песин Александр Моисеевич
  • Пустовойтов Денис Олегович
  • Набатчиков Дмитрий Геннадьевич
  • Чикишев Денис Николаевич
  • Стеканов Павел Александрович
  • Брайчев Евгений Викторович
RU2490080C1
СПОСОБ СТАБИЛИЗАЦИИ ТЕПЛОВОГО ПРОФИЛЯ ВАЛКОВ 2001
  • Карпов Е.В.
  • Урцев В.Н.
  • Хабибулин Д.М.
  • Бердичевский Ю.Е.
RU2191650C1
Способ прокатки полос 1989
  • Николаев Виктор Александрович
SU1690868A1
СПОСОБ НЕПРЕРЫВНОЙ ХОЛОДНОЙ ПРОКАТКИ ПОЛОСЫ С НАТЯЖЕНИЕМ 2009
  • Павлов Сергей Игоревич
  • Кузнецов Виктор Валентинович
  • Гарбер Эдуард Александрович
  • Тимофеева Марина Анатольевна
RU2409432C1
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ ТОНКИХ ПОЛОС НА ШИРОКОПОЛОСНОМ СТАНЕ 2014
  • Мишнев Петр Александрович
  • Палигин Роман Борисович
  • Гарбер Эдуард Александрович
  • Шалаевский Дмитрий Леонидович
  • Михеева Ирина Алексеевна
  • Кухтин Сергей Анатольевич
  • Акимов Владимир Анатольевич
  • Болобанова Наталия Леонидовна
RU2578328C2
Способ горячей прокатки полосовой стали 1982
  • Хлопонин Виктор Николаевич
  • Полухин Петр Иванович
  • Полухин Владимир Петрович
  • Бурлаков Сергей Александрович
  • Савченко Владимир Сергеевич
SU1072931A1
Способ охлаждения валков листопрокатного стана 1986
  • Тимошенко Леонид Васильевич
  • Воробей Сергей Александрович
  • Мазур Валерий Леонидович
  • Чмелев Александр Андреевич
  • Тимофеев Александр Юрьевич
SU1346285A1

Реферат патента 2012 года СПОСОБ ОХЛАЖДЕНИЯ РАБОЧИХ ВАЛКОВ СТАНОВ ГОРЯЧЕЙ ПРОКАТКИ

Изобретение предназначено для повышения стойкости рабочих валков, используемых при горячей прокатке листов и полос. Способ включает подачу водовоздушной смеси на участок поверхности бочки в зоне выхода из очага деформации. Снижение перегрева рабочих валков, уменьшение образования сетки трещин разгара, снижение их термического изнашивания обеспечивается за счет того, что удельный расход воды Q и давление воздуха Р регламентируется заданными соотношениями, учитывающими температуру поверхности прокатываемого металла, радиус валка, скорость прокатки, обжатие в клети. Изобретение обеспечивает формирование однородной водовоздушной смеси на участках поверхности бочки в зоне выхода из очага деформации, улучшающей условия тепловой работы валка. 2 табл., 1 пр.

Формула изобретения RU 2 457 913 C1

Способ охлаждения рабочих валков стана горячей прокатки, включающий подачу водовоздушной смеси форсунками на участок поверхности бочки в зоне выхода из очага деформации, отличающийся тем, что удельный расход воды Q определяют из соотношения:

где Т - температура поверхности прокатываемого металла, °С;
R - радиус валка, мм;
V - скорость прокатки, м/с;
k - эмпирический коэффициент, зависящий от обжатия в клети: при обжатии ≤30% k=7…5, а при обжатии >30% k=1,5…5,
при этом давление воздуха Р, необходимое для образования водовоздушной смеси на выходе из форсунок, определяют соотношением:
P=Qm,
где Q - удельный расход воды, м3/ч;
m - эмпирический коэффициент, зависящий от обжатия в клети: при обжатии ≤30% m=0,2…0,3, а при обжатии >30% m=0,1…0,2.

Документы, цитированные в отчете о поиске Патент 2012 года RU2457913C1

СПОСОБ ОХЛАЖДЕНИЯ РАБОЧЕГО ВАЛКА СТАНА ГОРЯЧЕЙ ПРОКАТКИ 2000
  • Скороходов В.Н.
  • Настич В.П.
  • Чернов П.П.
  • Пименов А.Ф.
  • Тишенко А.Д.
  • Мазур С.И.
  • Трайно А.И.
  • Пименов В.А.
RU2183143C2
Способ охлаждения прокатных валков и проката 1977
  • Белый Валерий Афанасьевич
  • Беспалко Виктор Кузьмич
  • Сокол Григорий Антонович
SU651862A1
Способ охлаждения прокатных валков 1981
  • Луцкий Михаил Борисович
  • Бутенко Виктор Николаевич
  • Козин Николай Павлович
  • Проценко Юрий Юрьевич
  • Залесов Марат Давыдович
  • Антипенко Валентин Григорьевич
  • Коровин Юрий Викторович
SU995932A1
US 3659428 А, 02.05.1972
JP 9038709 А, 10.02.1997.

RU 2 457 913 C1

Авторы

Дубовский Сергей Васильевич

Платов Сергей Иосифович

Терентьев Дмитрий Вячеславович

Дема Роман Рафаэльевич

Зубарева Марина Владимировна

Харченко Максим Викторович

Ярославцев Алексей Викторович

Даты

2012-08-10Публикация

2011-02-10Подача