СПОСОБ АБРАЗИВНО-ЭКСТРУЗИОННОЙ ОБРАБОТКИ КАНАЛА С ЦИЛИНДРИЧЕСКОЙ И КОНУСНОЙ ЧАСТЯМИ Российский патент 2012 года по МПК B24B31/116 

Описание патента на изобретение RU2469832C1

Изобретение относится к абразивно-экструзионной обработке деталей вязкоупругой рабочей средой, подаваемой под давлением, и может быть использовано в машиностроении для обработки деталей с каналом, имеющим цилиндрическую форму, переходящую в конусную.

Известен способ финишной обработки поверхности канала, имеющего неправильную форму (Патент US №4936057, В24В 57/02). В полость канала с переменной формой сечения размещают приспособление, выравнивающее сечение канала по его длине, и продавливают через канал вязкоупругий абразивный материал. При этом вязкоупругая среда представляет собой смесь абразивных частиц и полутвердого, вязкоупругого реологического дилатантного полимера с консистенцией замазки (замазка из силикона). Абразивные частицы выбраны из группы, состоящей из микрозерен кремниевого карбида, карбида бора, алюминиевой окиси, карбида титана, алмазной пыли, корунда, граната, алюмдума, стекла, осколков ракушек и смесей из всего этого. После обработки указанное приспособление из канала удаляют. Выравнивающее устройство представляет собой отливку, стойкую к абразивному истиранию, и имеет конфигурацию, которая копирует в определенном масштабе переменную поверхность канала. Таким образом, когда выравнивающее устройство помещено в обрабатываемый канал, между выравнивающим устройством и стенкой канала образуется зазор постоянной ширины, через который перемещается абразивная среда.

Недостатком данного способа является то, что при обработке канала, имеющего цилиндрическую форму, переходящую в конусную, появляется неравномерность обработки, возникающая из-за разницы величины объемного расхода среды в цилиндрической и кольцевой частях канала при одинаковых площадях поперечного сечения (для неньютоновских жидкостей в зависимости от индекса течения расход в кольцевом канале меньше, чем в цилиндрическом в 1,2…6,4 раза). Кроме того, изменяется объемный расход в конической кольцевой щели вследствие изменения площади поперечного сечения при соблюдении условия равенства ширины зазора и возникает неравномерность обработки по длине конусной части канала.

Задачей изобретения является обеспечение равномерности обработки канала, имеющего цилиндрическую и конусную части.

Поставленная задача решена тем, что в известном способе абразивно-экструзионной обработки канала с цилиндрической и конусной частями, заключающемся в размещении выравнивающего устройства в конусной части канала с образованием кольцевого зазора между обрабатываемой поверхностью и поверхностью выравнивающего устройства и последующем продавливании через канал вязкоупругой абразивной смеси, согласно техническому решению выравнивающее устройство имеет форму, обеспечивающую постоянную площадь поперечного сечения кольцевого зазора по всей длине конусной части канала, превышающую площадь поперечного сечения цилиндрической части канала в 1,2... 6,4 раза, что обеспечивает постоянство объемного расхода абразивной смеси.

Сущность изобретения поясняется чертежом.

На фиг.1 изображен продольный разрез обрабатываемого канала.

На фиг.2 показано сечение В-В - входной канал выравнивающего устройства.

На фиг.3 - сечение А-А и Б-Б - кольцевой зазор между выравнивающим устройством и обрабатываемым каналом.

Способ обработки осуществляют следующим образом. В конусную часть канала детали 1 помещают выравнивающее устройство 2, образующее с внутренней поверхностью канала кольцевой зазор (фиг.1). После этого деталь 1 закрепляют при помощи нижнего 3 и верхнего 4 переходников и основания 5 в цилиндрах 7 и 8 на установке для продавливания абразивной смеси. В местах контакта детали 1 с верхним 4 и нижним 3 переходниками установлены уплотнения 6 для предотвращения появления округлений кромок входного и выходного отверстий канала. Выравнивающее устройство 2 выполнено в форме конуса с размерами, обеспечивающими постоянство площади поперечного сечения кольцевого зазора между внутренней поверхностью конусной части канала и наружной поверхностью выравнивающего устройства по всей длине канала.

После установки детали через входной канал (фиг.1, фиг.2) из гидроцилиндра (на фиг. не показан) начинают подавать абразивную смесь.

Верхний 4 и нижний 3 переходники изменяют характер потока абразивной смеси (направление потока показано стрелками), согласовывая диаметр гидроцилиндра с диаметром обрабатываемого канала.

Равенство площади поперечного сечения зазора между внутренней поверхностью конусной части канала детали 1 и наружной поверхностью выравнивающего устройства 2 (фиг.3, сечение А-А и Б-Б) обеспечивает равенство объемного расхода абразивной смеси в конусной части канала. Постоянство объемного расхода абразивной смеси по всей длине канала обеспечено при превышении площади поперечного сечения кольцевого канала в 1,2…6,4 раза по сравнению с площадью поперечного сечения цилиндрической части канала (определено экспериментальным путем).

Размеры выравнивающего устройства, определяющие величину зазора, определяют экспериментально в зависимости от требуемой шероховатости обрабатываемой поверхности, состава абразивной смеси и возможно максимальной производительности процесса.

Применение выравнивающего устройства устраняет влияние деформаций входа и телескопического сдвига, а также изменяет режим течения в конусе к течению в кольцевом канале (щели) с постоянной площадью поперечного сечения.

Пример. Обрабатывали деталь типа сопло-насадок термопластавтомата, изготовленную из легированной жаростойкой стали, имеющую твердость HRСэ 40…45 (после закалки). После основных формообразующих операций и термообработки поверхность канала детали имела дефектный слой глубиной 0,01…0,05 мм и шероховатость Ra=4,5…6,2 мкм. Радиус цилиндрической части канала 1,78 мм, радиус конусной части увеличивается от 1,78 мм до 8,92 мм.

Для абразивно-экструзионной обработки данной детали выбран следующий состав среды по весовой компоненте: каучук кремнийорганический СКТ - 25%, электрокорунд белый 500 мкм - 40…65%, другие наполнители и пластификаторы - 10…35%.

Для сравнения провели обработку сопла-насадка без применения выравнивающих приспособлений. Требуемая шероховатость Ra=0,32 мкм была достигнута только в цилиндрической части канала за 30 циклов обработки. В конусной части получили шероховатость поверхности Ra=0,35…1,25 мкм по длине канала. Наибольший съем металла наблюдался в месте перехода цилиндрического отверстия в коническое отверстие.

Затем провели обработку сопла-насадка по схеме прототипа с выравнивающим устройством, которое точно с соблюдением масштаба копирует коническую часть канала, сохраняя постоянным ширину кольцевого зазора, равную радиусу цилиндрической части канала 1,78 мм. Требуемая шероховатость Ra=0,32 мкм достигнута в цилиндрической части канала за 30…35 циклов обработки по всей поверхности канала. В конусной части за это количество циклов получена шероховатость поверхности в диапазоне Ra=0,4…0,5 мкм.

Абразивно-экструзионная обработка сопла-насадка по предлагаемому способу - с установлением выравнивающего устройства в конусной части канала, обеспечивающим постоянную площадь поперечного сечения полученного кольцевого зазора в конусной части канала, превышающую площадь поперечного сечения канала в цилиндрической части в 3,0 раза, что обеспечивает постоянный расход рабочей смеси по всей длине обрабатываемого канала. Коэффициент k=3,0 определен исходя из состава рабочей смеси. Радиус конусной части выравнивающего устройства изменялся от 0 до 8,37 мм, при этом сохранялась одинаковая площадь поперечного сечения кольцевой щели, равная 30 мм2.

Требуемая шероховатость Ra=0,32 мкм достигнута по всей поверхности канала за 35 циклов или за 600…620 сек. Направление шероховатости стало совпадать с направлением потока, т.е. стало оптимальным для условий эксплуатации данной детали.

Заявляемый способ позволяет добиться равномерной обработки канала в результате обеспечения постоянного объемного расхода рабочей смеси в цилиндрической и конусной частях канала.

Похожие патенты RU2469832C1

название год авторы номер документа
СПОСОБ КОМБИНИРОВАННОЙ ОБРАБОТКИ УЗКИХ КАНАЛОВ ДЕТАЛИ 2015
  • Сухочев Геннадий Алексеевич
  • Родионов Александр Олегович
  • Коденцев Сергей Николаевич
  • Силаев Денис Васильевич
  • Сокольников Василий Николаевич
RU2634398C2
Способ отделочно-упрочняющей обработки внутренних поверхностей 2023
  • Левко Валерий Анатольевич
  • Сысоева Любовь Петровна
  • Литовка Ольга Владимировна
  • Иванов Павел Андреевич
  • Сысоев Александр Сергеевич
  • Рыков Андрей Дмитриевич
RU2820469C1
СПОСОБ ОБРАБОТКИ АБРАЗИВНЫМ ПОТОКОМ МЕЖЛОПАТОЧНЫХ КАНАЛОВ КРЫЛЬЧАТОК 2020
  • Теряев Николай Сергеевич
  • Левко Валерий Анатольевич
RU2751073C1
Способ и устройство для центробежно-шпиндельной обработки поверхностей изделий 2020
  • Зверовщиков Владимир Зиновьевич
  • Липов Александр Викторович
  • Павловский Павел Геннадьевич
  • Нестеров Сергей Александрович
  • Зверовщиков Анатолий Владимирович
RU2755328C1
СПОСОБ ЦЕНТРОБЕЖНОЙ ОБРАБОТКИ ВНУТРЕННИХ ПОВЕРХНОСТЕЙ МЕЛКОРАЗМЕРНЫХ ДЕТАЛЕЙ 2014
  • Зверовщиков Владимир Зиновьевич
  • Зверовщиков Александр Евгеньевич
  • Стешкин Артем Вячеславович
RU2572684C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПРЕЦИЗИОННЫХ ДЛИННОМЕРНЫХ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ, ПРЕИМУЩЕСТВЕННО БИМЕТАЛЛИЧЕСКИХ, И ИНСТРУМЕНТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Бычков Н.А.
  • Картель Г.А.
  • Покрас И.Б.
  • Ростовщиков В.А.
  • Кимбергер Франц
  • Визер Руперт
RU2248260C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВОДЯНОГО ПОЛОТЕНЦЕСУШИТЕЛЯ 2005
  • Никитин Николай Иванович
  • Ельчинов Дмитрий Николаевич
  • Паршуто Александр Эрнстович
  • Хлебцевич Всеволод Алексеевич
RU2310552C2
РУЧНОЙ ИНСТРУМЕНТ-ЭЛЕКТРОД ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛИРОВАНИЯ МЕТАЛЛОВ 2011
  • Драчев Олег Иванович
  • Расторгуев Дмитрий Александрович
  • Тычкин Иван Александрович
RU2472874C1
СПОСОБ ЦЕНТРОБЕЖНОЙ ОБРАБОТКИ ДЕТАЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Зверовщиков Владимир Зиновьевич
  • Зверовщиков Анатолий Владимирович
  • Зверовщиков Александр Евгеньевич
  • Агейкин Илья Владимирович
RU2365484C1
СПОСОБ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ ЦИНКА И ЦИНКОВЫХ СПЛАВОВ 2004
  • Зверовщиков В.З.
  • Нестеров С.А.
  • Зверовщиков А.В.
  • Ставицкий В.Н.
RU2261789C1

Иллюстрации к изобретению RU 2 469 832 C1

Реферат патента 2012 года СПОСОБ АБРАЗИВНО-ЭКСТРУЗИОННОЙ ОБРАБОТКИ КАНАЛА С ЦИЛИНДРИЧЕСКОЙ И КОНУСНОЙ ЧАСТЯМИ

Изобретение относится к машиностроению и может быть использовано при абразивно-экструзионной обработке деталей, имеющих канал цилиндрической формы, переходящей в конусную. В конусной части канала размещают выравнивающее устройство, имеющее форму конуса. Последнее обеспечивает постоянную площадь поперечного сечения образованного кольцевого зазора по всей длине конусной части. Упомянутая площадь превышает площадь поперечного сечения цилиндрической части канала в 1,2…6,4 раза. По каналу продавливают вязкоупругую абразивную смесь с обеспечением постоянства объемного расхода абразивной смеси. Такие действия способствуют повышению равномерности обработки канала по всей длине. 3 ил., 1 пр.

Формула изобретения RU 2 469 832 C1

Способ абразивно-экструзионной обработки канала с цилиндрической и конусной частями, включающий размещение выравнивающего устройства в конусной части канала с образованием кольцевого зазора между обрабатываемой поверхностью и поверхностью выравнивающего устройства и последующее продавливание через канал вязкоупругой абразивной смеси, отличающийся тем, что используют выравнивающее устройство, имеющее форму конуса, при этом обеспечивают постоянный объемный расход абразивной смеси при постоянной площади поперечного сечения образованного кольцевого зазора по всей длине конусной части канала, превышающей площадь поперечного сечения цилиндрической части канала в 1,2…6,4 раза.

Документы, цитированные в отчете о поиске Патент 2012 года RU2469832C1

US 4936057 A, 26.06.1990
Способ обработки заготовок абразивной массой 1986
  • Ящерицын Петр Иванович
  • Агасарян Роберт Рубенович
  • Мамбреян Петрос Арутюнович
SU1351759A1
УСТРОЙСТВО ДЛЯ АБРАЗИВНО-ЭКСТРУЗИОННОЙ ОБРАБОТКИ ДЕТАЛЕЙ 2010
  • Верба Владимир Степанович
  • Гудков Александр Григорьевич
  • Леушин Виталий Юрьевич
  • Назаров Николай Григорьевич
  • Силкин Александр Тихонович
RU2423218C1
Станок для гидравлического полирования колец 1947
  • Федотов Г.Я.
SU78671A1

RU 2 469 832 C1

Авторы

Левко Валерий Анатольевич

Пшенко Елена Борисовна

Даты

2012-12-20Публикация

2011-07-11Подача