Изобретение относится к гидрометаллургии редких металлов, в частности молибдена, и может быть использовано для переработки низкосортных молибденитовых концентратов с получением молибдата кальция, пригодного для выплавки ферромолибдена.
Известен способ разложения молибденитовых концентратов азотной кислотой при атмосферном давлении с получением молибденовой кислоты, которую используют либо в качестве продукта, либо подвергают гидрометаллургической переработке с получением в качестве товарного продукта парамолибдата аммония или триоксида молибдена (А.Н.Зеликман, Молибден. М., 1978. 440 с.).
Недостатком этого способа является то, что после разложения концентрата 80% молибдена находится в твердой фазе в составе молибденовой кислоты, а 20% молибдена остается в маточном растворе. Оба этих продукта нуждаются в гидрометаллургической переработке, что приводит к разветвлению технологической схемы, делая ее более затратной и громоздкой. Другим недостатком является выделение образующихся нитрозных газов в атмосферу.
Известен способ автоклавного разложения молибденитового концентрата азотной кислотой, с получением молибденовой кислоты, которую используют либо в качестве продукта, либо подвергают гидрометаллургической переработке с получением в качестве товарного продукта парамолибдата аммония или триоксида молибдена (Пат. 3751555 (США), 1973). Выделения нитрозных газов в атмосферу при этом не происходит, поскольку они непосредственно в автоклаве регенерируются в азотную кислоту при подаче в автоклав кислорода, который является, по сути, единственным расходуемым реагентом.
Недостатком этого способа является то, что после разложения концентрата 80% молибдена находится в твердой фазе в составе молибденовой кислоты, а 20% молибдена остается в маточном растворе. Оба этих продукта нуждаются в гидрометаллургической переработке, что приводит к разветвлению технологической схемы, делая ее затратной и громоздкой. Другим недостатком является то, что процесс осуществляется в автоклавах - аппаратах, требующих больших капитальных затрат на эксплуатацию и повышенных требований к технике безопасности.
Технический результат предлагаемого способа направлен на создание экологически безопасной азотнокислотной технологии переработки низкосортных молибденитовых концентратов, обеспечивающей перевод всего молибдена в раствор, что позволяет упростить гидрометаллургическую переработку продуктов разложения молибденитовых концентратов, и получение в качестве готового продукта молибдата кальция, пригодного для выплавки ферромолибдена. Кроме того, при наличии в концентрате свинца и серебра способ позволяет концентрировать их в кеке.
Технический результат достигается тем, что в известном способе азотнокислотного разложения молибденитовых концентратов при атмосферном давлении в выщелачивающий раствор помимо азотной кислоты добавляют серную кислоту, в количестве, достаточном для удержания всего молибдена в растворе в составе водорастворимых сульфатных соединений молибденила, а из полученных после фильтрации пульпы растворов осаждают молибдат кальция добавлением хлорида кальция при корректировке pH щелочью.
Образующиеся в ходе разложения концентрата нитрозные газы улавливают путем абсорбции водой с регенераций раствора азотной кислоты, который направляют на азотнокислотное разложение концентрата.
Кроме того, исходный концентрат предварительно подвергают «сухой» механоактивации, после которой при его дальнейшей переработке по азотнокислотному способу свинец и серебро концентрируются в кеке.
Суть предлагаемого способа заключается в том, что при разложении низкосортных молибденитовых концентратов выщелачивающим раствором, содержащим помимо азотной кислоты серную кислоту, весь молибден переходит в раствор за счет образования водорастворимых сульфо-молибденильных соединений и изменении вследствие этого механизма разложения.
В известных способах азотнокислотного разложения молибденитовых концентратов основным конечным продуктом является молибденовая кислота, образующаяся по реакции (I)
При этом в начальный период времени весь окисленный молибден переходит в раствор, где находится в составе катионов MoO2 2+ и Mo2O5 2+. При увеличении в растворе концентрации серной кислоты часть молибдена связывается в анионные сульфатные комплексы (например, [MoO2(SO4)2]2-). Дальнейшее увеличение в растворе концентрации молибдена в условиях недостатка сульфат-ионов приводит к коагуляции H2MoO4(тв). В производственной практике 80% молибдена выпадает в осадок в составе молибденовой кислоты, а 20% остается в маточном растворе в составе анионных комплексов.
Особенность низкосортных молибденитовых концентратов заключается в том, что в них содержится большое количество сопутствующих молибдениту сульфидов, которые реагируют с азотной кислотой по реакциям (2-5)
При этом по реакциям (4,5) выделяется монооксид азота, который окисляет молибденит, а по реакциям (2, 4) выделяется дополнительное количество серной кислоты. Азотнокислотное выщелачивание молибденита в таком случае описывается реакцией (6)
Таким образом, при выщелачивании молибденитовых концентратов имеет место следующее динамическое равновесие между исходным молибденитом и продуктами его окисления:
При добавлении в пульпу серной кислоты повышается концентрация сульфат-ионов в растворе и равновесие смещается в сторону образования анионных комплексов ([MoO2(SO4)2]2-), что позволяет полностью удерживать молибден в растворе, а также сдвинуть равновесие реакции (6) вправо за счет отвода первичного продукта реакции в сульфатный комплекс и тем самым повысить извлечение молибдена в раствор.
Пример 1. В качестве исходного сырья использован низкосортный молибденитовый концентрат следующего состава (мас.%): MoS2 - 29,2; FeS2 - 26,9; PbS - 5,6, CuFeS2 - 10,0; ZnS - 4,0, Ag - 336 г/т. Концентрат подвергли двустадийному азотнокислотному разложению раствором, содержащим 350 г/л азотной кислоты и 200 г/л серной кислоты, при температуре 85°C, соотношении Т:Ж=1:4, продолжительности 2 ч на каждой стадии и атмосферном давлении в реакторе-агитаторе с механическим перемешиванием. В таблице 1 представлен материальный баланс по молибдену при вышеуказанных технологических параметрах.
Объем, мл
Полученную пульпу отфильтровали и из фильтрата осаждали молибдат кальция следующим образом. В исходный раствор медленно при интенсивном перемешивании добавляли известь в количестве, необходимом для нейтрализации раствора до pH=3.
При этом большая часть сульфат-ионов связывается в гипс, который отделяют фильтрацией. Фильтрат подают на доосаждение сульфат-ионов раствором хлорида бария и повторную фильтрацию. В очищенный от сульфат-ионов раствор добавляют CaCl2 в составе 40%-ного водного раствора в стехиометрическом количестве на реакцию с молибдат-ионами, нагревают до температуры 80-90°C и нейтрализуют едким натром до pH=7,0-7,5, при этом осаждаются гидроксиды железа. Затем пульпу после фильтрации нейтрализуют до pH=8,5-9,0, охлаждают до комнатной температуры и фильтруют. При таких условиях молибден осаждается в составе молибдата кальция на 94-95%.
Качество полученного CaMoO4 (таблица 2) соответствует марке МДК-2, содержащей не менее 40% Мо (содержание примесей не более, %: Р - 0,2; S - 0,23).
Образующиеся нитрозные газы улавливали в колоннах-абсорберах с получением азотной кислоты.
Пример 2. В качестве исходного сырья использован низкосортный молибденитовый концентрат следующего состава (мас.%): MoS2 - 29,2; FeS2 - 26,9; PbS - 5,6, CuFeS2 - 10,0; ZnS - 4,0, Ag - 336 г/т. Концентрат подвергли механическому активированию в центробежной планетарной мельнице ЛАИР - 015 при факторе энергонапряженности - 25 g. Длительность активирования 3 мин, масса концентрата 20 г, масса стальных мелящих тел - 800 г. Режим активирования - воздушный. После активирования концентрат с целью определения изменения реакционной способности молибдена и сопутствующих металлов подвергали азотнокислотному разложению раствором, содержащим 350 г/л азотной кислоты и 200 г/л серной кислоты, при температуре 80°C, соотношении Т:Ж=1:4, продолжительности 30 мин и атмосферном давлении в реакторе-агитаторе с механическим перемешиванием. В таблице 3 приведены результаты экспериментов.
мент
Видно, что при выщелачивании предварительно активированного концентрата увеличивается извлечение в раствор всех концентрирующихся при выщелачивании в жидкой фазе элементов. Извлечение же в раствор свинца и серебра уменьшается, тем самым увеличивая концентрацию этих металлов в кеке.
Таким образом, реализация заявленного способа позволяет упростить процесс переработки низкосортных молибденитовых концентратов, получить молибдат кальция, соответствующий марки МДК-2, пригодный для выплавки ферромолибдена, сконцентрировать свинец и серебро в кеке и исключить выделение нитрозных газов в атмосферу. Кроме того, перевод молибденовой подотрасли цветной металлургии на низкосортные концентраты обеспечит более рациональное использование природных ресурсов за счет сокращения потерь при флотации (исключения многочисленных доводочных операций с целью получения кондиционных концентратов).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕРАБОТКИ МОЛИБДЕНИТОВЫХ КОНЦЕНТРАТОВ | 1992 |
|
RU2017845C1 |
Способ переработки молибденитсодержащих концентратов | 2018 |
|
RU2696989C1 |
СПОСОБ ГИДРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ РЕНИЙСОДЕРЖАЩЕГО МОЛИБДЕНИТОВОГО СЫРЬЯ | 2019 |
|
RU2693223C1 |
СПОСОБ ПЕРЕРАБОТКИ МОЛИБДЕНСОДЕРЖАЩЕГО СЫРЬЯ | 2005 |
|
RU2281914C1 |
Способ переработки молибденовых концентратов | 1989 |
|
SU1693105A1 |
СПОСОБ ПОЛУЧЕНИЯ МОЛИБДЕНОВОГО ПРОДУКТА | 2001 |
|
RU2213058C2 |
СПОСОБ ГИДРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ РЕНИЙСОДЕРЖАЩЕГО МОЛИБДЕНИТОВОГО КОНЦЕНТРАТА | 2009 |
|
RU2398902C1 |
Способ переработки остатков от аммиачного выщелачивания огарков обжига молибденитовых концентратов | 1990 |
|
SU1801138A3 |
Способ извлечения молибдена | 1981 |
|
SU982362A1 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ ИЗ НИТРАТНО-СУЛЬФАТНЫХ РАСТВОРОВ | 1996 |
|
RU2093596C1 |
Изобретение относится к гидрометаллургии редких металлов, в частности молибдена, и может быть использовано для переработки и разложения низкосортных молибденитовых концентратов с получением молибдата кальция, пригодного для выплавки ферромолибдена. Способ включает двустадийную обработку концентратов водным раствором азотной кислоты, фильтрацию пульпы с получением кека и раствора, содержащего молибден. Затем из раствора осаждают молибдат кальция, пригодный для выплавки ферромолибдена. При этом разложение концентратов ведут при добавлении в водный раствор азотной кислоты серной кислоты, в количестве, достаточном для удержания всего молибдена в растворе в составе водорастворимых сульфатных соединений молибденила, в частности с анионным комплексом [MoO2(SO4)2]2-. Техническим результатом является создание экономичной и экологически безопасной технологии, позволяющей по короткой схеме перерабатывать низкосортные молибденитовые концентраты, что обеспечивает существенное повышение сквозного извлечения молибдена и сопутствующих ему металлов из руд в товарные продукты и тем самым способствует более рациональному использованию недр. 1 з.п. ф-лы, 3 табл., 2 пр.
1. Способ азотнокислотного разложения низкосортных молибденитовых концентратов, включающий двустадийную обработку концентратов водным раствором азотной кислоты, фильтрацию пульпы с получением кека и раствора, содержащего молибден, и осаждение из раствора молибдата кальция, пригодного для выплавки ферромолибдена, отличающийся тем, что разложение концентратов ведут при добавлении в водный раствор азотной кислоты, серной кислоты в количестве, достаточном для удержания всего молибдена в растворе в составе водорастворимых сульфатных соединений молибденила, в частности с анионным комплексом [MoO2(SO4)2]2-.
2. Способ по п.1, отличающийся тем, что исходный концентрат предварительно подвергают сухой механоактивации для концентрирования свинца и серебра в кеке, являющемся техногенным сырьем для их извлечения.
US 3751555 A, 07.08.1973 | |||
WO 2008063986 A2, 29.05.2008 | |||
СПОСОБ ПЕРЕРАБОТКИ МОЛИБДЕНИТОВЫХ КОНЦЕНТРАТОВ | 1992 |
|
RU2017845C1 |
ПРИБОР В ФОРМЕ ШТАНГЕНЦИРКУЛЯ ДЛЯ ИЗМЕРЕНИЯ УГЛОВ | 1929 |
|
SU17742A1 |
Смеситель для жидких и газообразных сред | 1988 |
|
SU1542600A1 |
Устройство для измерения нагрузок при испытании подшипников | 1977 |
|
SU658423A1 |
Устройство для определенияудЕльНОгО BECA | 1979 |
|
SU808910A1 |
Авторы
Даты
2013-03-10—Публикация
2012-01-23—Подача