СПОСОБ ИЗГОТОВЛЕНИЯ ГНУТЫХ ДЕТАЛЕЙ ИЗ ПРОФИЛЬНОГО ПРОКАТА Российский патент 2013 года по МПК B21D5/01 

Описание патента на изобретение RU2483822C2

Настоящее изобретение относиться к области различных технологических процессов, а именно к области судостроения, связанной с изготовлением деталей корпуса судна, корабля.

В настоящее время криволинейные детали судового набора из профильного проката изготавливают способом холодной гибки прямолинейных заготовок и последующей вырезки из них с помощью газовой резки деталей необходимой формы.

Аналогом предлагаемого способа является способ, разработанный Веселковым В.В. в работе «Использование графической информации для задания размеров и контроля формы лекальной кромки профильных деталей». Технология судостроения, №1, 1978 г.

В этом способе используются спрямляемые линии, которые сегодня рассчитываются во всех CAD/CAM системах. Однако, поскольку они служат только для контроля формы общего изгиба заготовки и не задают форму обрезов концов, их применение не позволяет полностью отказаться от необходимости использования гибочных шаблонов. В результате отношение к точности определения формы спрямляемых линий невысокое.

Прототипом заявляемого способа является «Способ изготовления гнутых профилей проката» по А.С. СССР №603180, бюл. №18, 1979 г.

В этом способе вначале в соответствии с данными чертежа корпусной конструкции определяется длина развертки (прямолинейной полосы) детали. Расчет длины развертки может выполняться с помощью специализированных модулей компьютерных CAD/CAM систем или путем обмера гибочного шаблона. Затем к полученной длине развертки со стороны гнутых (криволинейных) концов прибавляются гибочные припуски.

В соответствии с полученной длиной заготовки из профильной полосы вырезается прямолинейная заготовка, которая затем подвергается гибке на гибочном оборудовании. Контроль формы согнутой заготовки при этом в процессе гибки, выполняется с помощью гибочных шаблонов, которые изготавливаются в рамках плазово-технологической подготовки на каждую деталь. После изгиба заготовки с помощью гибочного шаблона производится разметка на согнутой заготовке формы детали. При этом в процессе разметки размечают форму обрезки концов детали и все вырезы как на кромке детали, так и в поле детали. После чего из размеченной согнутой заготовки с помощью ручною газорезательного оборудования (газовый резак) вырезают собственно деталь (обрезаются концы и вырезаются все вырезы). Вырезанная деталь подвергается повторному контролю с помощью гибочного шаблона и, в случае необходимости (если деталь потеряла форму в результате тепловых деформаций в процессе вырезки), производится доводка согнутой детали до требований отклонения формы, регламентированных нормативными допусками. Доводка выполняется методом тепловой правки с помощью газорезательного оборудования.

Основным недостатком данного способа является необходимость производства гибочных шаблонов на каждую деталь, необходимость увеличения длины заготовки на значения гибочных припусков, которые после гибки обрезаются в шихту (отход), и невозможность использования оборудования с числовым программным управлением (ЧПУ) для вырезки концов деталей.

Задачей изобретения является улучшения технологического процесса за счет отказа от использования гибочных шаблонов, улучшения качества готовых деталей и снижения трудоемкости их производства.

Поставленная задача достигается тем, что способ изготовления гнутых деталей с вырезами из проката включает получение развертки детали с использованием робота-резчика с ЧПУ для разметки вырезов па кромке и стенке и вырезки криволинейных концов на кромке и стенке по линии в виде спирали Архимеда, ее гибку в два этапа, на первом из которых с помощью пресса для ротационно-локальной гибки методом раскатки подгибают криволинейные концы на длине от 800-1000 мм с контролем формы согнутых концов детали по спрямляемым линиям, на втором этапе гибку выполняют по существующей технологии с контролем формы согнутой детали по спрямляемым линиям и окончательную вырезку вырезов.

В настоящее время для вырезки прямолинейных деталей из профильного проката используется робот-резчик с ЧПУ. В отечественном судостроении робот-резчик используется на ОАО «Балтийский завод». Согнутые заготовки с помощью робота-резчика обрабатывать нельзя.

Последнее (ручная обрезка концов) определяет невысокую точность формы концов деталей судового набора (особенно в плане разделки головки профильной заготовки), что в дальнейшем отрицательно сказывается на качестве собираемых корпусных конструкций.

В качестве оборудования для вырезки и разметки профильной заготовки предлагается использовать робот-резчик немецкой фирмы IMG. Опыт его использования сегодня имеется на ОАО «Балтийский завод». Однако в настоящее время он применяется только для вырезки и разметки прямолинейных деталей судового набора. В рамках предлагаемого метода робот будет вырезать и размечать прямолинейную развертку криволинейной детали. Вырезаться будут концы деталей, а размечаться вырезы на кромке и стенке (вырезать их до гибки нельзя в соответствии с технологией). При этом форма линии обреза в составе УП будет задаваться не в виде прямого отрезка (как это делается в применяемом методе), а в виде спирали Архимеда. Геометрические параметры спирали Архимеда для каждого прямолинейного обреза профиля с высотой стенки Н и малкой М определяются по трем точкам исходя из того, что точка обреза на растянутой стороне полосы должна быть отклонена от прямой линии на величину 1 9 H M R нсл (где Rнсл - радиус изгиба нейтрального слоя) в сторону, противоположную растяжению, а точка на сжатом слое - на величину 4 9 H M R нсл в сторону, противоположную сжатию, при этом положение точки на нейтральном слое остается неизменным.

В настоящее время спрямляемые линии (в зарубежном судостроении они называются инверсными линиями) рассчитываются во всех CAD/CAM системах. Однако, поскольку они служат только для контроля формы общего изгиба заготовки и не задают форму обрезов концов, их использование не позволяет полностью отказаться от необходимости применения гибочных шаблонов. В результате отношение к точности определения формы спрямляемых линий невысокое.

В предлагаемом методе форма обрезов концов формируется в процессе вырезки роботом-резчиком, поэтому отношение к качеству задания формы изгиба с помощью спрямляемых линий более ответственное. Использование робота-резчика совместно со спрямляемыми линиями позволяет отказаться от использования гибочных шаблонов вообще, но для этого необходимо повысить надежность метода контроля с помощью спрямляемых линий. Для достижения данной цели авторами, по сравнению с аналогами и вариантами их расчета в зарубежных системах, дается новое теоретическое обоснование расстояния между формоопределяющими точками для расчета спрямляемых линий и величины перекроя. Так расстояние между формоопределяющими точками предлагается брать не более 100 мм, а величину перекроя брать не менее половины короткой спрямляемой линии. Данные теоретические положения делают контроль формы согнутой заготовки с помощью спрямляемых линий не менее точным, чем с помощью гибочных шаблонов.

Для того чтобы реализовать гибку заготовки без припусков, предлагается выполнять ее в два этапа. Такой подход ранее не применялся. На первом этапе с помощью пресса для ротационно-локальной гибки методом раскатки выполняется подгибка криволинейных концов в объеме 800-1000 мм длины. Контроль формы согнутых концов детали осуществляется по спрямлению спрямляемых линий.

На втором этапе гибка выполняется по любой существующей технологии (на горизонтальном прессе, роликовом прессе, вертикальном прессе) с контролем формы согнутой детали по спрямляемыми линиям.

Окончательный процесс вырезки вырезов на кромке и в поле детали осуществляется с помощью ручной газовой резки. При этом, если после вскрытия вырезов деталь потеряет форму вследствие тепловых деформаций, ее правка, как и в варианте традиционной технологии, будет выполняться с помощью газовой горелки.

Технико-экономическая эффективность.

Предлагаемый способ изготовления гнутых деталей из профильного проката позволяет полностью отказаться от использования гибочных шаблонов (сокращение трудоемкости и материалов), отказаться от необходимости назначения гибочных припусков (сокращение расхода металла, экономия материала может лежать в пределах от 600 до 1600 мм на каждую производимую деталь), использовать оборудование с ЧПУ для вырезки концов деталей (повышение точности готовых деталей, снижение трудоемкости).

Похожие патенты RU2483822C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ОБРАЗЦОВ ДЕТАЛЕЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2013
  • Шатров Владимир Борисович
  • Мелехин Александр Григорьевич
  • Минченков Александр Михайлович
RU2537612C1
СПОСОБ ФОРМООБРАЗОВАНИЯ ЛИСТОВЫХ ДЕТАЛЕЙ ДВОЯКОЙ КРИВИЗНЫ 2003
  • Куклин О.С.
  • Попов В.И.
RU2243843C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ЗНАКОПЕРЕМЕННОЙ КРИВИЗНЫ 2002
  • Самусев С.В.
  • Нестеров Г.В.
RU2229355C1
СПОСОБ ГИБКИ ПРОФИЛЬНЫХ ТРУБ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Рубцов Владимир Иванович
  • Рощупкин Василий Иванович
RU2365450C1
Способ изготовления кольца 2015
  • Логунов Леонид Петрович
RU2624882C2
Способ изготовления направляющих лопаток гидромашины 1980
  • Хохулин Владимир Николаевич
  • Панов Михаил Сергеевич
  • Ананьин Вадим Иванович
  • Пичугин Виктор Георгиевич
SU996007A1
СПОСОБ ПРОДОЛЬНОГО РАСКРОЯ БРЕВНА ПО СПИРАЛИ АРХИМЕДА И СТАНОК ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Матухнов Михаил Михайлович
  • Яковлев Максим Александрович
RU2664312C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАГОТОВОК ИЗ ЭЛАСТИЧНОГО ПОЛОТНА МАТЕРИАЛА 1992
  • Вакилов Р.Ф.
RU2041822C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ С КРИВОЛИНЕЙНЫМИ УЧАСТКАМИ ИЗ ПРОФИЛЬНЫХ ТРУБ 2012
  • Рубцов Владимир Иванович
RU2508957C1
Способ изготовления тройников из листа 1986
  • Есарев Валерий Иванович
SU1388135A1

Реферат патента 2013 года СПОСОБ ИЗГОТОВЛЕНИЯ ГНУТЫХ ДЕТАЛЕЙ ИЗ ПРОФИЛЬНОГО ПРОКАТА

Изобретение относится к области судостроения, связанной с изготовлением деталей корпуса судна, корабля. Получают развертку детали с использованием робота-резчика с ЧПУ для разметки вырезов на кромке и стенке и вырезки криволинейных концов на кромке и стенке по линии в виде спирали Архимеда. Осуществляют гибку в два этапа, на первом из которых с помощью пресса для ротационно-локальной гибки методом раскатки подгибают криволинейные концы на длине от 800-1000 мм с контролем формы согнутых концов детали по спрямляемым линиям. На втором этапе гибку выполняют по существующей технологии с контролем формы согнутой детали по спрямляемым линиям и окончательную вырезку вырезов. Улучшается качество готовых деталей и снижается трудоемкость.

Формула изобретения RU 2 483 822 C2

Способ изготовления гнутых деталей с вырезами из проката, включающий получение развертки детали с использованием робота-резчика с ЧПУ для разметки вырезов на кромке и стенке и вырезки криволинейных концов на кромке и стенке по линии в виде спирали Архимеда, ее гибку в два этапа, на первом из которых с помощью пресса для ротационно-локальной гибки методом раскатки подгибают криволинейные концы на длине от 800-1000 мм с контролем формы согнутых концов детали по спрямляемым линиям, на втором этапе гибку выполняют с контролем формы согнутой детали по спрямляемым линиям и окончательную вырезку вырезов.

Документы, цитированные в отчете о поиске Патент 2013 года RU2483822C2

Зубцов М.Е
Листовая штамповка
- Л.: Машиностроение, 1980, с.137-139
Способ изготовления гнутых профилей проката 1976
  • Тришевский И.С.
  • Докторов М.Е.
  • Пшеничная Н.В.
  • Асеев М.И.
SU603180A1
СПОСОБ ПРОИЗВОДСТВА ГНУТЫХ ПРОФИЛЕЙ 1978
  • Прокопенко М.Г.
  • Светличный В.Ф.
  • Гулько А.И.
  • Берман Г.З.
SU811571A1
СИСТЕМА АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ И ПРОГРАММА АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ 2003
  • Миура Масами
  • Кавано Такаюки
  • Сасаки Юити
  • Накахама Такеси
  • Йосида Ясухико
RU2294560C2
Способ получения диацетилциклопентадиена 1974
  • Миронов Виталий Алексеевич
  • Федорович Александр Дмитриевич
  • Янковский Сергей Аркадьевич
  • Лукьянов Владимир Тимофеевич
  • Ахрем Афанасий Андреевич
SU495302A1

RU 2 483 822 C2

Авторы

Фомичев Андрей Борисович

Веселков Вячеслав Васильевич

Половинкин Валерий Николаевич

Игошин Евгений Викторович

Катанович Андрей Андреевич

Даты

2013-06-10Публикация

2011-07-29Подача