СПОСОБ ПЕРЕРАБОТКИ ТЕТРАФТОРИДА ЦИРКОНИЯ Российский патент 2013 года по МПК C01G25/04 

Описание патента на изобретение RU2484019C1

Изобретение относится к фторидной технологии переработки цирконовых концентратов, включающей переработку промежуточного продукта этой технологии - тетрафторида циркония.

Известен способ двухстадийной переработки тетрафторида циркония, включающий, на первой стадии, его взаимодействие с восстановителем, элементарным кальцием, в присутствии дифторида цинка, который добавляют для повышения термичности процесса за счет его реагирования с металлическим кальцием, с получением цирконий-цинкового сплава, и в качестве отхода технологического процесса дифторида кальция, а на второй стадии, отгонку цинка из его сплава с цирконием [1].

Недостатками данного способа являются его двухстадийность, повышенный расход дорогостоящего кальция, часть которого расходуется на взаимодействие с дифторидом цинка, получение в качестве отхода технологического процесса шлака, представляющего дешевый дифторид кальция, в состав которого переходит фтор, входивший в состав переработанного тетрафторида циркония, и необходимость проведения энергоемкой операции по отгонке в газообразном состоянии цинка из цирконий-цинкового сплава.

За прототип принимаем способ переработки тетрафторида циркония, включающий его взаимодействие с восстановителем, элементарным кальцием, с добавлением в исходную реакционную смесь элементарного йода, повышающего термичность процесса [2].

Недостатками прототипа являются непроизводительные потери фтора, входящего в состав тетрафторида циркония и переходящего при его переработке в шлак, представляющий дешевый дифторид кальция, переработка которого проблематична, а также сложность предотвращения потерь элементарного йода, который является дорогостоящим химическим реагентом.

Задачей заявляемого технического решения является упрощение технологического процесса за счет проведения его в одну стадию и исключения образования производственных отходов, а также расширение ассортимента полезной продукции, получаемой непосредственно в процессе переработки тетрафторида циркония, в частности диборида циркония, который в настоящее время применяется в качестве сырья в производстве жаропрочной керамики, и трифторида бора, который применяется в качестве катализатора в производстве органических веществ.

Поставленная задача решается тем, что в способе, включающем введение во взаимодействие тетрафторида циркония с восстановителем в режиме самораспространяющегося высокотемпературного синтеза с добавлением в реакционную смесь веществ, повышающих термичность данного процесса, отличающемся тем, что в качестве восстановителя используют элементарный бор в виде порошка, который берут в избытке от стехиометрии реакции 3ZrF4+10В=3ZrB2+4ВF3, в качестве вещества, повышающего термичность процесса, используют порошок металлического циркония, а взаимодействие компонентов реакционной смеси проводят под давлением не ниже 2,30 МПа, при этом массовое соотношение ZrF4:Zr:B в исходной смеси обеспечивают в пределах 1:(0,6-0,7):(0,3-0,4) и в качестве запальной смеси используют смесь металлического циркония с бором в соотношении, соответствующем стехиометрии синтеза из них диборида циркония.

Процесс взаимодействия тетрафторида циркония с элементарным бором, используемым в качестве восстановителя, и порошка металлического циркония, повышающего термичность процесса, с избыточным бором описывается суммарным уравнением химической реакции

3ZrF4+Zr+12В=4ZrB2+4ВF3,

которые используются в термохимических расчетах.

Термодинамические расчеты данной реакции и предварительные экспериментальные исследования подтверждают возможность получения веществ, которые до создания данного изобретения не получали непосредственно в процессе переработки тетрафторида циркония, что подтверждает факт расширения номенклатуры продукции, получаемой непосредственно при переработке тетрафторида циркония.

Применение в качестве поджигающей смеси порошков бора и циркония обеспечивает чистоту целевого продукта, диборида циркония.

Отклонение количественных соотношений взаимодействующих компонентов от заявляемых пределов приводит к их неполному реагированию.

Взаимодействие тетрафторида циркония с бором при давлении в реакторе ниже 2,3 МПа приводит к снижению выхода целевых продуктов из-за повышения испаряемости тетрафторида циркония и удаления его из реагирующей смеси.

Способ осуществляют следующим образом. Готовят смесь, содержащую 1,00 весовую часть измельченного порошка тетрафторида циркония, 0,65 весовых частей порошка металлического циркония и 0,35 весовых частей элементарного бора. В цилиндрический графитовый тигель насыпают 50,00 грамм этой смеси, в верхней части ее слоя формируют углубление цилиндрической формы, в которое насыпают 5,00 грамм запальной смеси, представляющей смешанный порошок, содержащий 4,00 грамм порошкообразного циркония и 1,00 порошкообразного бора. Поскольку процесс самораспространяющегося высокотемпературного синтеза протекает с распространением реагирования по всему объему реакционной смеси, то такого количества запальной смеси достаточно для полного обеспечения реагирования любого объема реакционной смеси. В слой запальной смеси вводят спираль из циркониевой проволоки, предназначенную для ее поджигания. Загруженный тигель устанавливают в реактор (бомбу). Реактор герметизируют, вакуумируют и заполняют аргоном до давления 2,00 МПа, после чего на циркониевую спираль подают электрическое напряжение. При этом запальная смесь начинает реагировать с выделением большого количества тепла, инициирующего взаимодействие компонентов рабочей смеси. Процесс протекает в течение 2-3 минут. В результате взаимодействия давление в реакторе повышается до 2,30 МПа. После прекращения реагирования компонентов смеси газ из реактора пропускают через предварительно взвешенную емкость, снабженную впускным и выпускным вентилями и охлаждаемую жидким азотом, в которой конденсируется образовавшийся трифторид бора. После снижения давления в реакторе до атмосферного оставшийся в нем газ откачивают вакуумным насосом через охлажденную жидким азотом емкость. Реактор несколько раз продувают аргоном, вскрывают и извлекают из него тигель с прореагировавшей смесью. Емкость с трифторидом бора и содержимое тигля взвешивают, и из них отбирают пробы, которые подвергают анализу. По результатам взвешивания и анализа определяют выход целевых продуктов и проводят их идентификацию. В данном примере получено 44,10 грамм твердого продукта, содержащего 97,5% основного вещества, что соответствует его 95,60% выходу от теоретического исходя из загрузки реагентов в реакционный тигель, и 26,90 грамм трифторида бора, содержащего 98,00% основного вещества, что соответствует его 97,10% выходу от теоретического.

Результаты этого и последующих примеров реализации способа при варьировании его параметров приведены в нижеследующей таблице 1.

Таблица 1 Выход и чистота целевых продуктов при переработке Пример № Содержание порошков Zr и B в 50,00 грамм реакционной смеси, в массовых частях на1 часть ZrF4 Рабочее давление в реакторе, МПа Содержание ZrB2 в твердом продукте, масс.% Выход ZrBz, масс.% Содержание BF3 в газовой фазе, масс.% Выход BF3, масс.% В Zr 1 0,35 0,65 2,3 97,5 95,6 98,0 97,1 2 0,40 0,60 2,3 97,3 95,4 98,2 97,3 3 0,30 0,70 2,3 97,4 95,4 98,3 97,4 4 0,25 0,75 Взаимодействие не началось 5 0,45 0,55 Взаимодействие не началось 6 0,35 0,65 1,8 91,1 79,8 91,3 67,3

Примеры 1-3, приведенные в таблице, свидетельствуют о том, что в пределах заявляемых количественных соотношений реагентов и давления в реакторе наблюдаются высокие выходы целевых продуктов диборида циркония и трифторида бора - с высоким их содержанием в твердой и газовой фазах соответственно. При отклонении количественных соотношений от заявляемых процесс взаимодействия компонентов реакционной смеси не начинается, что видно из примеров 4 и 5. При проведении процесса взаимодействия реагентов при давлении ниже заявляемого - 2,30 МПа - выходы твердой и газовых фаз снижаются одновременно со снижением содержания в них целевых продуктов, что видно из примера №6.

Источники информации

1. Козлов A.M., Маширев В.П., Семенова Э.А., Макаренко Ю.А. Проблемы химии циркония и получения металлического циркония методом кальциетермического восстановления его фторида. Обзор по материалам отечественных и зарубежных работ за 1960-1971 годы. Часть 2. М.; ГОНТИ ВНИИХТ. - 1972. С.98-99.

2. Зеликман А.Н., Меерсон Г.Л. Металлургия редких металлов. - М.: Металлургия, 1973. С.399.

Похожие патенты RU2484019C1

название год авторы номер документа
ПЕРЕРАБОТКА ХИМИЧЕСКОГО СЫРЬЯ 2012
  • Нел, Йоханнес Теодорус
  • Ретиф, Виллем Либенберг
  • Хавенга, Йохан Луис
  • Ду Плессис, Вильгельмина
  • Ле Руа, Йоханнес Петрус
RU2609882C2
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВА, ВЫБРАННОГО ИЗ РЯДА: БОР, ФОСФОР, КРЕМНИЙ И РЕДКИЕ ТУГОПЛАВКИЕ МЕТАЛЛЫ (ВАРИАНТЫ) 2005
  • Карелин Александр Иванович
  • Карелин Владимир Александрович
  • Казимиров Валерий Андреевич
RU2298589C2
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНЫХ СПЛАВОВ НА ОСНОВЕ РЕДКОЗЕМЕЛЬНЫХ И ПЕРЕХОДНЫХ МЕТАЛЛОВ 1991
  • Буйновский А.С.
  • Жиганов А.Н.
  • Кравченко И.В.
  • Кондаков В.М.
  • Макасеев Ю.Н.
  • Софронов В.Л.
  • Штефан Ю.П.
  • Чижиков В.С.
RU2031464C1
Способ получения комплексного соединения состава 2XeFxMnF 2018
  • Артюхов Александр Алексеевич
  • Рыжков Александр Васильевич
  • Артюхов Алексей Александрович
  • Кравец Яков Максимович
  • Ивлиев Павел Николаевич
RU2673844C1
СПОСОБ ИММОБИЛИЗАЦИИ ТВЕРДЫХ РАДИОАКТИВНЫХ ОТХОДОВ 2007
  • Андриец Сергей Петрович
  • Дедов Николай Владимирович
  • Малютина Валентина Михайловна
  • Соловьев Александр Иванович
RU2369930C2
СПОСОБ ВОЛКОВА ДЛЯ ПРОИЗВОДСТВА ХИМИЧЕСКИ АКТИВНЫХ МЕТАЛЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Волков Анатолий Евгеньевич
RU2401874C2
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВА, ВЫБРАННОГО ИЗ РЯДА ТУГОПЛАВКИХ МЕТАЛЛОВ ИЛИ РЯДА НЕМЕТАЛЛОВ: КРЕМНИЙ, БОР, ФОСФОР, МЫШЬЯК, СЕРА 2005
  • Карелин Александр Иванович
  • Карелин Владимир Александрович
  • Казимиров Валерий Андреевич
  • Шарафутдинов Равель Газизович
  • Кушхабиев Тимофей Заурбиевич
RU2298588C2
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОГО ДИБОРИДА ЦИРКОНИЯ 2004
  • Соловьев Александр Иванович
  • Мещеряков Валерий Никитич
  • Малый Евгений Николаевич
  • Селиховкин Александр Михайлович
  • Дедов Николай Владимирович
  • Степанов Игорь Анатольевич
  • Кириллов Евгений Анатольевич
  • Крупин Александр Геннадьевич
  • Кутявин Эдуард Михайлович
  • Мочалов Юрий Серафимович
  • Сенников Юрий Николаевич
RU2309893C2
СПОСОБ ПЕРЕРАБОТКИ ЦИРКОНОВОГО КОНЦЕНТРАТА 2006
  • Андриец Сергей Петрович
  • Дедов Николай Владимирович
  • Соловьев Александр Иванович
  • Малютина Валентина Михайловна
  • Селиховкин Александр Михайлович
  • Кутявин Эдуард Михайлович
  • Степанов Игорь Анатольевич
RU2311345C1
СПОСОБ ПОЛУЧЕНИЯ ТОНКОДИСПЕРСНОГО МОНОКРИСТАЛЛИЧЕСКОГО ПОРОШКА ДИБОРИДА МЕТАЛЛА 1995
  • Балашов В.Б.
  • Кирдяшкин А.И.
  • Максимов Ю.М.
  • Назыров И.Р.
RU2087262C1

Реферат патента 2013 года СПОСОБ ПЕРЕРАБОТКИ ТЕТРАФТОРИДА ЦИРКОНИЯ

Изобретение относится к технологии переработки тетрафторида циркония с получением диборида циркония и трифторида бора. Способ переработки тетрафторида циркония включает введение во взаимодействие тетрафторида циркония с восстановителем в режиме самораспространяющегося высокотемпературного синтеза с добавлением в реакционную смесь веществ, повышающих термичность данного процесса. В качестве восстановителя используют элементарный бор в виде порошка, который берут в избытке от стехиометрии реакции 3ZrF4+10B=3ZrB2+4BF3, в качестве вещества, повышающего термичность процесса, используют порошок металлического циркония, а взаимодействие компонентов реакционной смеси проводят под давлением не ниже 2,30 МПа, при этом массовое соотношение ZrF4:Zr:B в исходной смеси обеспечивают в пределах 1:(0,6-0,7):(0,3-0,4) и в качестве запальной смеси используют смесь металлического циркония с бором в соотношении, соответствующем стехиометрии синтеза из них диборида циркония. Техническим результатом является получение ценных продуктов взаимодействия диборида циркония и трифторида бора. 1 табл.

Формула изобретения RU 2 484 019 C1

Способ переработки тетрафторида циркония, включающий введение во взаимодействие тетрафторида циркония с восстановителем в режиме самораспространяющегося высокотемпературного синтеза с добавлением в реакционную смесь веществ, повышающих термичность данного процесса, отличающийся тем, что в качестве восстановителя используют элементарный бор в виде порошка, который берут в избытке от стехиометрии реакции 3ZrF4+10B=3ZrB2+4BF3, в качестве вещества, повышающего термичность процесса, используют порошок металлического циркония, а взаимодействие компонентов реакционной смеси проводят под давлением не ниже 2,30 МПа, при этом массовое соотношение ZrF4:Zr:B в исходной смеси обеспечивают в пределах 1:(0,6-0,7):(0,3-0,4), и в качестве запальной смеси используют смесь металлического циркония с бором в соотношении, соответствующем стехиометрии синтеза из них диборида циркония.

Документы, цитированные в отчете о поиске Патент 2013 года RU2484019C1

ЗЕЛИКМАН А.Н., МЕЕРСОН Г.Л
Металлургия редких металлов
- М.: Металлургия, 1973, с.399
Способ переработки цирконового концентрата 1990
  • Буйновский Александр Сергеевич
  • Сердюк Владимир Николаевич
  • Софронов Владимир Леонидович
SU1754659A1
СПОСОБ ПОЛУЧЕНИЯ ЦИРКОНИЯ ИЛИ ГАФНИЯ ВЫСОКОЙ ЧИСТОТЫ 1993
  • Батеев В.Б.
  • Евстюхин А.И.
  • Коцарь М.Л.
  • Леонтьев Г.А.
  • Рябин Е.В.
  • Федоров В.Д.
RU2048558C1
Пропеллер 1926
  • Абрамов В.М.
  • Второв С.В.
  • Соколов Н.И.
SU12188A1
Способ получения интерметаллического катализатора для гидродегидрогенизации углеводородов и гидрирования оксида углерода 1988
  • Лунин В.В.
  • Коцарь М.Л.
  • Батеев В.Б.
  • Иванов А.Н.
  • Кокорев В.В.
  • Крюков О.В.
  • Кузнецова Н.Н.
  • Мухачев А.П.
  • Леппке Н.Ю.
  • Сысоев С.Н.
  • Хаджиев С.Н.
  • Цейтлин И.Л.
SU1552436A1
Цистерна для хранения и транспортированияжидКОгО гЕлия 1975
  • Пронько Владимир Григорьевич
  • Мирославская Юлия Андреевна
  • Краузе Андрей Игоревич
  • Тарасов Виктор Павлович
  • Буланова Лиана Бенициановна
SU815425A1

RU 2 484 019 C1

Авторы

Ситников Артур Степанович

Соловьев Александр Иванович

Кобзарь Юрий Федорович

Малютина Валентина Михайловна

Васильева Ольга Леонидовна

Даты

2013-06-10Публикация

2012-01-11Подача