ИЗНОСОСТОЙКАЯ МЕТАСТАБИЛЬНАЯ АУСТЕНИТНАЯ СТАЛЬ Российский патент 2013 года по МПК C22C38/58 

Описание патента на изобретение RU2485203C1

Изобретение относится к области металлургии, а именно к аустенитным метастабильным сталям, и может найти применение для изготовления изделий, работающих в условиях интенсивного абразивного воздействия или подвергаемых значительным ударным нагрузкам, в том числе для изготовления горнодобывающего и дробильного оборудования, ковшей экскаваторов, траков гусеничных машин, шнеков, бил молотковых дробилок, деталей землеройных и почвообрабатывающих машин.

Известна аустенитная метастабильная сталь, содержащая углерод, марганец, кремний, хром, никель, азот, ванадий, титан, алюминий, кальций и железо при следующем соотношении компонентов, мас.%: углерод 0,9-1,3; марганец 6,0-10,0; кремний 0,3-0,7; хром 1,0-1,8; никель 0,7-3,0; азот 0,06-0,12; ванадий 0,1-0,3; титан 0,08-0,15; алюминий 0,05-0,1; кальций 0,01-0,08; железо - остальное. Известная сталь в отливках после закалки имеет аустенитную структуру и обладает высокой износостойкостью при ударном воздействии и удовлетворительной ударной вязкостью при пониженной температуре. (RU 2017859, С22С 38/58, опубликовано 15.08.1994)

Недостатком этой стали является недостаточно высокие механические характеристики при легировании на нижнем уровне, а также повышенная стабильность аустенита при комнатной температуре при легировании на верхнем уровне, в результате чего мартенситное превращение, обеспечивающее высокую износостойкость, при абразивном воздействии не происходит. Мартенситное превращение в этой стали при легировании на верхнем уровне возможно только лишь при низкотемпературной деформации.

Наиболее близкой по технической сущности и достигаемому результату является метастабильная аустенитная сталь для высоконагруженных деталей, содержащая углерод, марганец, хром, никель, азот, ванадий, титан, церий, кальций, барий и железо при следующем соотношении компонентов, мас.%: углерод ≤0,06; марганец 7,50-8,50; хром 14,00-16,00; никель 8,50-9,50; азот 0,20-0,40; ванадий 0,90-1,50; титан 0,01-0,20; церий 0,015-0.02; кальций 0,001-0,02; барий 0,001-0,01; железо - остальное. При этом отношение содержания ванадия и титана к азоту и углероду составляет 3,1-3,3. Известная сталь после ковки, закалки и старения обладает повышенными значениями пластичности и вязкости при криогенных температурах. (RU 2173351, С22С 38/58, опубликовано 10.09.2001).

Недостатками этой стали являются недостаточные механические характеристики при высоком уровне легирования марганцем, хромом, никелем и ванадием, а также повышенная стабильность аустенита при комнатной температуре, в результате чего мартенситное превращение, обеспечивающее высокую износостойкость, при абразивном воздействии не происходит. Мартенситное превращение в этой стали возможно только лишь при низкотемпературной деформации.

Задачей и техническим результатом изобретения является повышение прочностных характеристик и износостойкости стали в условиях интенсивного абразивного воздействия или воздействия значительных ударных нагрузок.

Технический результат достигается тем, что износостойкая аустенитная метастабильная сталь содержит углерод, марганец, хром, никель, азот, ванадий, титан, церий, кальций, кремний, железо и естественные примеси при следующем соотношении компонентов, мас.%:

Углерод 0,10-0,30 Марганец 3,50-4,0 Хром 11,50-12,50 Никель 2,80-3,50 Азот 0,20-0,25 Ванадий 0,08-0,15 Титан 0,01-0,20 Церий 0,005-0,03 Кальций 0,005-0,02 Кремний 0,10-0,50 Железо и естественные примеси остальное.

Предлагаемые диапазоны концентраций компонентов являются оптимальными с точки зрения достижения технического результата.

Углерод в концентрации 0,10-0,30 мас.% обеспечивает высокую технологичность в процессе выплавки стали, высокую прочность и износостойкость стали. При более низком содержания углерода снижаются механические свойства и износостойкость стали за счет уменьшения содержания углерода в твердом растворе, а при более высоком содержании углерода ускоряется коалесценция карбидов и карбонитридов, что повышает прочностные характеристики, но снижает ударную вязкость. Кроме того, увеличивается стабильность аустенита, что снижает износостойкость стали при интенсивном абразивном воздействии.

Оптимальное сочетание содержания хрома, марганца, никеля, ванадия, углерода и азота обеспечивает высокую износостойкость стали за счет формирования структуры метастабильного аустенита, способного при интенсивном абразивном воздействии превращаться в мартенсит. Более низкое содержание хрома уменьшает упрочнение твердого раствора, а более высокое содержание чем 12,50 мас.%, нецелесообразно, так как требуемый уровень свойств уже обеспечен.

Оптимальное содержание ванадия в сочетании с титаном и церием обеспечивает вывод азота из твердого раствора, что делает сталь метастабильной и обеспечивает превращение аустенита в мартенсит при абразивном или ударном воздействии.

Дополнительное введение в сталь кремния в количестве 0,10-0,50 мас.% повышает прочностные характеристики стали и уменьшает стабильность аустенита.

Изобретение можно проиллюстрировать результатами сравнительных испытаний стали по изобретению и стали - ближайшего аналога (таблица).

Выплавку сталей проводили в 150-кг индукционной печи с разливкой металла на литые заготовки. Полученные отливки подвергали нагреву в интервале температур 1050-1070°С с последующей закалкой в воду и дробеструйной обработке для упрочнения поверхностного слоя стали. Известную сталь закаливали в воду с температуры 1150°С и отпускали при 650°С в течение 10 ч.

Механические свойства сталей оценивали по стандартной методике при комнатной температуре, а износостойкость определяли по результатам абразивной пескоструйной обработки с углом атаки 80 градусов.

Из представленных данных следует, что сталь по изобретению обеспечивает достижение поставленного технического результата: повышение прочностных характеристик, а также износостойкости стали в условиях интенсивного абразивного воздействия

Результаты сравнительных испытаний Компоненты сталей Содержание компонентов, мас. % Сталь по изобретению Известная сталь Углерод 0,10 0,15 0,30 0,06 Марганец 3,50 3,80 4,00 8,00 Кремний 0,10 0,30 0,50 - Хром 11,50 12,00 12,50 15,00 Никель 2,80 3,25 3,50 9,00 Азот 0,20 0,22 0,25 0,30 Ванадий 0,08 0,10 0,15 1,20 Титан 0,01 0,10 0,20 0,15 Церий 0,005 0,02 0,03 0,02 Кальций 0,005 0,015 0,02 0,02 Барий - - - 0,01 Фосфор 0,020 0,015 0,025 0,015 Сера 0,015 0,020 0,025 0,015 Железо и примеси остальное остальное остальное остальное Механические свойства сталей σ02,. Н/мм2 750 765 780 620 σВ, Н/мм2 940 920 950 780 δ, % 24 22 20 20 KCV, Дж/см2 250 230 225 180 Износостойкость сталей Время испытаний, ч 10 10 10 10 Потери веса, мг 100 95 90 250

Похожие патенты RU2485203C1

название год авторы номер документа
ИЗНОСОСТОЙКАЯ МЕТАСТАБИЛЬНАЯ АУСТЕНИТНАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Нуралиев Фейзулла Алибала Оглы
  • Щепкин Иван Александрович
  • Кафтанников Александр Сергеевич
  • Муханов Евгений Львович
  • Ананьев Павел Петрович
  • Концевой Семен Израилович
  • Плотникова Анна Валериевна
RU2710760C1
ИЗНОСОСТОЙКАЯ МЕТАСТАБИЛЬНАЯ АУСТЕНИТНАЯ СТАЛЬ 2017
  • Дегтярев Александр Федорович
  • Назаратин Владимир Васильевич
  • Нуралиев Фейзулла Алибала Оглы
RU2656911C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОТЛИВКИ ИЗ ВЫСОКОПРОЧНОЙ ИЗНОСОСТОЙКОЙ СТАЛИ (ВАРИАНТЫ) 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Нуралиев Фейзулла Алибала Оглы
  • Щепкин Иван Александрович
  • Кафтанников Александр Сергеевич
  • Муханов Евгений Львович
RU2750299C2
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2012
  • Дегтярев Александр Федорович
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Шепилов Николай Борисович
RU2493285C1
ВЫСОКОПРОЧНАЯ ПОРОШКОВАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2020
  • Каблов Евгений Николаевич
  • Неруш Святослав Васильевич
  • Тонышева Ольга Александровна
  • Мазалов Павел Борисович
  • Крылов Сергей Алексеевич
  • Богачев Игорь Александрович
RU2751064C1
ЛИТАЯ ВЫСОКОМАРГАНЦЕВАЯ СТАЛЬ 2007
  • Гришин Андрей Анатольевич
  • Стадничук Виктор Иванович
  • Стадничук Александр Викторович
RU2371509C2
АУСТЕНИТНО-ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2700440C1
ИЗНОСОСТОЙКАЯ СТАЛЬ ИСТ ЭЛ-200 1999
  • Зоц Н.В.
  • Лебедев В.В.
  • Зайцев А.Б.
  • Примеров С.Н.
RU2149213C1
ВЫСОКОПРОЧНАЯ ИЗНОСОСТОЙКАЯ СТАЛЬ ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ МАШИН (ВАРИАНТЫ) 2015
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Рябов Вячеслав Викторович
  • Сошина Татьяна Викторовна
  • Зисман Александр Абрамович
  • Орлов Виктор Валерьевич
  • Беляев Виталий Анатольевич
  • Шумилов Евгений Алексеевич
RU2606825C1
ЛИТАЯ ХЛАДОСТОЙКАЯ СТАЛЬ 2018
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Нуралиев Фейзула Алибала Оглы
  • Юргина Жанна Владимировна
RU2679679C1

Реферат патента 2013 года ИЗНОСОСТОЙКАЯ МЕТАСТАБИЛЬНАЯ АУСТЕНИТНАЯ СТАЛЬ

Изобретение относится к области металлургии, а именно к аустенитным метастабильным сталям, используемым для изготовления изделий, работающих в условиях интенсивного абразивного воздействия или подвергаемых значительным ударным нагрузкам, в том числе для изготовления горнодобывающего и дробильного оборудования, ковшей экскаваторов, траков гусеничных машин, шнеков, бил молотковых дробилок, деталей землеройных и почвообрабатывающих машин. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,10-0,30, марганец 3,50-4,0, хром 11,50-12,50, никель 2,80-3,50, азот 0,20-0,25, ванадий 0,08-0,15, титан 0,01-0,20, церий 0,005-0,03, кальций 0,005-0,02, кремний 0,10-0,50, железо и неизбежные примеси остальное. Повышаются прочностные характеристики и износостойкость стали в условиях интенсивного абразивного воздействия или воздействия значительных ударных нагрузок. 1 табл.

Формула изобретения RU 2 485 203 C1

Износостойкая аустенитная метастабильная сталь, содержащая углерод, марганец, хром, никель, азот, ванадий, титан, церий, кальций, железо и естественные примеси, отличающаяся тем, что она дополнительно содержит кремний при следующем соотношении компонентов, мас.%:
углерод 0,10-0,30 марганец 3,50-4,0 хром 11,50-12,50 никель 2,80-3,50 азот 0,20-0,25 ванадий 0,08-0,15 титан 0,01-0,20 церий 0,005-0,03 кальций 0,005-0,02 кремний 0,10-0,50 железо и естественные примеси остальное

Документы, цитированные в отчете о поиске Патент 2013 года RU2485203C1

МЕТАСТАБИЛЬНАЯ АУСТЕНИТНАЯ СТАЛЬ 1996
  • Солнцев Ю.П.
  • Цихисели В.Г.
  • Вологжанина С.А.
  • Колчин Г.Г.
  • Кривцов Ю.С.
  • Штернин С.Л.
RU2173351C2
ИЗНОСОСТОЙКАЯ СТАЛЬ 1998
  • Рашников В.Ф.
  • Морозов А.А.
  • Тахаутдинов Р.С.
  • Колокольцев В.М.
  • Вдовин К.Н.
  • Анцупов В.П.
RU2137859C1
Цементуемая штамповая сталь 1981
  • Ворошнин Леонид Григорьевич
  • Ахмедпашаев Магомедпаша Узайруевич
  • Мартынюк Михаил Николаевич
  • Карбанович Виктор Казимирович
  • Мамедов Исмаил Ахмедович
SU950791A1
JP 4781836 B2, 28.09.2011.

RU 2 485 203 C1

Авторы

Дегтярев Александр Федорович

Егорова Марина Александровна

Берман Леонид Исаевич

Кригер Юрий Николаевич

Орлов Сергей Витальевич

Тараканов Сергей Александрович

Даты

2013-06-20Публикация

2012-04-28Подача