Изобретение относится к получению сополимеров акрилонитрила, которые широко используются в производстве углеродного волокна.
Известно, что сополимеры акрилонитрила с итаконовой кислотой и метилакрилатом используются в качестве прекурсоров для получения углеродного волокна. Совсем недавно было показано, что применение моноэфиров итаконовой кислоты также эффективно для этих целей [Qiu-fei Chen, Guo-liang Zhang, Xuan-dong Liu, Yu-song Xi, Yan-hua Li, Yun-bo Liu, Hecheng Xianwei, 39 (11) (2010), 27-30].
Сополимеризация акрилонитрила обычно осуществляется суспензионным методом в воде, либо растворным методом в ДМСО (диметилсульфоксиде) или водном растворе NaSCN [А.K. Gupta, D.K. Paliwal, Pushpa Bajaj, Journal of Macromolecular Science: Part C: Polymer Reviews, 31 (1) (1991), 1].
Оба метода имеют очевидные экономические и экологические недостатки: необходимость дорогостоящей регенерации акрилонитрила, использование потенциально токсичных серусодержащих реагентов, высокая цена на ДМСО и т.д. В настоящее время считается, что одним из наиболее доступных и в то же время экологически привлекательных растворителей для проведения различных процессов является суб- и сверхкритический СО2. Наиболее массовым его приложением уже много лет является экстракция алкалоидов из зерен кофе, в последние годы широко исследуется его применение в качестве растворителя для осуществления различных видов полимеризации [E.J. Beckman, Journal of Supercritical Fluids, 28 (2004), 121]. В работе [X. -R. Teng, Journal of Applied Polymer Science, 87 (2003), 1393] показано, что в среде сверхкритического СО2 можно осуществлять гомополимеризацию акрилонитрила. Данные о получении сополимеров акрилонитрила с производными итаконовой кислоты, а также метилакрилатом в среде сверхкритического СО2 отсутствуют. Вместе с тем, именно использование сополимеров акрилонитрила с итаконатами (производными итаконовой кислоты) и, иногда, с метилакрилатом определенного состава позволяет получать углеволокно с заданными характеристиками.
Известен также способ получения сополимеров на основе акрилонитрила путем радикальной сополимеризации 90-95 мас.% акрилонитрила с метакрилатом и мономером, выбранным из группы, содержащей акриловую, метакриловую и итаконовую кислоты. Процесс осуществляют в водной среде при водном модуле 2 - 3:1, рН, равном 2-3, температуре 40-60°С и перемешивании в присутствии в качестве инициатора смеси 0,08-0,13 мас.ч. персульфата калия и 0,04-0,07 мас.ч. метабисульфита натрия с последующей промывкой осажденного сополимера водой. При этом используют особо чистые мономеры. Для достижения требуемого рН воду подкисляют серной кислотой [патент РФ №2084463 С1, кл. МПК C08F 220/44, C08F 2/18, опубл. 20.07.1997].
Недостатками этого способа являются неэкономичность как за счет применения высокочистых мономеров, так и за счет необходимости регенерации акрилонитрила, экологическая опасность применяемого растворителя - водного раствора серной кислоты.
Наиболее близкими аналогами являются способ синтеза сополимера акрилонитрила с итаконовой кислотой или ее производным - аммонийной солью в ДМСО [Yan-Xiang Wang, Cheng-Guo Wang, Ji-Wei Wu, Min Jing, Journal of Applied Polymer Science, 106 (2007), 1787] и способ синтеза сополимера акрилонитрила с метилакрилатом и кислым сомономером, подобным итаконовой кислоте, в ДМСО [Harry D. Johnson. Synthesis, Characterization, Processing and Physical Behavior of Melt-Processible Acrylonitrile Co- and Terpolymers for Carbon Fibres: Effect of Synthesis Variable on Copolymer Structure. Thesis Submitted to the Faculty of the Virginia Polytechnic Institute and State University, 2006, 24-34]. Оба способа включают смешение мономеров в среде растворителя - ДМСО - с добавлением инициатора радикальной полимеризации и нагреванием.
Недостатки этих способов указаны выше.
Задачей настоящего изобретения является обеспечение экологически безопасного, экономичного и энергоэффективного синтеза сополимеров акрилонитрила заданного состава с производными итаконовой кислоты с достаточно высоким выходом. При этом возможен подбор подходящего производного итаконовой кислоты (моноэфира или моноамида), выбор которого позволяет синтезировать сополимер с необходимым содержанием сомономера.
Поставленная задача решается тем, что в способе синтеза сополимеров акрилонитрила с производными итаконовой кислоты путем их смешения в среде растворителя с добавлением инициатора радикальной полимеризации и нагреванием до температур 65÷85°С в качестве растворителя используют сверхкритический диоксид углерода, в качестве производных итаконовой кислоты - ее моноэфиры или моноамиды, а содержание производных итаконовой кислоты в сополимере составляет от 0.01 до 4 мольных %.
Поставленная задача также решается тем, что в способе синтеза сополимеров акрилонитрила, производных итаконовой кислоты и метилакрилата путем их смешения в среде растворителя с добавлением инициатора радикальной полимеризации и нагреванием до температур 65÷85°С в качестве растворителя используют сверхкритический диоксид углерода, в качестве производных итаконовой кислоты используют ее моноэфиры или моноамиды, а содержание производных итаконовой кислоты в сополимере составляет от 0.01 до 4 мольных % при содержании метилакрилата от 0.01 до 4 мольных %.
Снижение температуры радикальной полимеризации ниже 65°С может нарушить требуемый состав сополимера и снизить его выход.
Полимеризацию проводят в термостатируемой ячейке, представляющей собой герметичный сосуд цилиндрической формы из нержавеющей стали, с внутренним объемом 70 см3, снабженный датчиками температуры и давления.
Точность термостатирования ячейки составляет ±19°С.
Инициаторами радикальной полимеризации могут быть азо(бис)изобутиронитрил (АИБН), ди(третбутил)пероксиоксалат, ди(третбутил)гипонитрит, бензоилпероксид, третбутилпероксибензоат, ди(третбутил)пероксид [K. Matjaszewski, T.P. Davis, Handbook of Radical Polymerization, 2002, by John Wiley and Sons, Inc., Hoboken], γ-излучение [Jonathan L. Kendall, Dorian A. Canelas, Jennifer L. Young, Joseph M. DeSimone, Chemical Reviews, 99(1999), 543].
Ниже следуют примеры, иллюстрирующие синтез сополимеров акрилонитрила с итаконатами в среде СО2. В качестве итаконатов были использованы следующие соединения: метиловый эфир итаконовой кислоты (метилитаконат) [С. Kuheli, F. Cristina, N. Patrizia, P. Giuliana, V. Ennio, Letters in Organic Chemistry, 7 (3) (2010), 245], этиловый эфир итаконовой кислоты (этилитаконат) [Ze Wang Feng, et al. Science in China, Series B: Chemistry, 51(10) (2008), 990], н-бутиловый эфир итаконовой кислоты (н-бутилитаконат) [Wang, Hanfeng, Preparation method of monobutyl itaconate, CN 102079702 (А)], моноамид итаконовой кислоты [Grobelny, Quinaldoyl-amine derivatives of oxo-and hydroxy-substituted hydrocarbons, US 5679688 Al], н-гексиламид итаконовой кислоты [Albert Zilkha, Uri Golik, Journal of Organic Chemistry, 28 (1963), 2007], также принадлежащий к классу моноамидов. Указанные итаконаты и их структурные формулы приведены ниже.
Загрузки реагентов и свойства полученных полимеров приведены в Таблице 1.
Пример 1
Синтез сополимера акрилонитрила с метилитаконатом в среде СО2.
В ячейку, заполненную аргоном, поместили магнитный якорь, обезгаженную смесь, состоящую из 30 мл акрилонитрила, 0.666 г метилитаконата, добавили 40 мг АИБН. После этого в ячейку при перемешивании добавили 45 г сверхкритического СО2, а затем нагрели до 75°С. Через 6 ч результирующую смесь охладили до комнатной температуры и удалили CO2. Полученный продукт промыли 100 мл ацетона и высушили. Содержание метилитаконата в образце полимера определяли методом 1Н ЯМР (растворитель BMSO-d6).
Пример 2
Синтез сополимера акрилонитрила с этилитаконатом в среде СО2.
В ячейку, заполненную аргоном, поместили магнитный якорь, обезгаженную смесь, состоящую из 30 мл акрилонитрила, 0.731 г этилового эфира итаконовой кислоты, добавили 40 мг АИБН. После этого в ячейку при перемешивании добавили 45 г сверхкритического СО2, а затем нагрели до 75°С. Через 6 ч результирующую смесь охладили до комнатной температуры и удалили СО2. Полученный продукт промыли 100 мл ацетона и высушили. Содержание этилитаконата в образце полимера определяли методом 1Н ЯМР (растворитель DMSO-d6).
Пример 3
Синтез сополимера акрилонитрила с н-бутилитаконатом в среде СО2.
В ячейку, заполненную аргоном, поместили магнитный якорь, обезгаженную смесь, состоящую из 30 мл акрилонитрила, 0.860 г бутилового эфира итаконовой кислоты, добавили 40 мг АИБН. После этого в ячейку при перемешивании добавили 45 г сверхкритического СО2, а затем нагрели до 75°С. Через 6 ч результирующую смесь охладили до комнатной температуры и удалили СО2. Полученный продукт промыли 100 мл ацетона и высушили. Содержание бутилитаконата в образце полимера определяли методом 1Н ЯМР (растворитель DMSO-d6).
Пример 4
Синтез сополимера акрилонитрила с метилитаконатом и метилакрилатом в среде СО2.
В ячейку, заполненную аргоном, поместили магнитный якорь, обезгаженную смесь, состоящую из 30 мл акрилонитрила, 0.85 мл метилакрилата и 0.680 г метилового эфира итаконовой кислоты, добавили 40 мг АИБН. После этого в ячейку при перемешивании добавили 45 г сверхкритического СО2, а затем нагрели до 75°С. Через 6 ч результирующую смесь охладили до комнатной температуры и удалили СО2. Полученный продукт промыли 100 мл ацетона и высушили. Содержание метилитаконата и метилакрилата в образце полимера определяли методом 1Н ЯМР (растворитель DMSO-d6).
Пример 5
Синтез сополимера акрилонитрила с метилитаконатом и метилакрилатом в среде СО2.
В ячейку, заполненную аргоном, поместили магнитный якорь, обезгаженную смесь, состоящую из 30 мл акрилонитрила, 0.86 мл метилакрилата и 1.374 г метилового эфира итаконовой кислоты, добавили 40 мг АИБН. После этого в ячейку при перемешивании добавили 45 г сверхкритического СО2, а затем нагрели до 75°С. Через 6 ч результирующую смесь охладили до комнатной температуры и удалили СО2. Полученный продукт промыли 100 мл ацетона и высушили. Содержание метилитаконата и метилакрилата в образце полимера определяли методом 1Н ЯМР (растворитель DMSO-d6).
Пример 6
Синтез сополимера акрилонитрила с метилитаконатом и метилакрилатом в среде СО2.
В ячейку, заполненную аргоном, поместили магнитный якорь, обезгаженную смесь, состоящую из 30 мл акрилонитрила, 1.76 мл метилакрилата и 1.403 г метилового эфира итаконовой кислоты, добавили 40 мг АИБН. После этого в ячейку при перемешивании добавили 45 г сверхкритического СО2, а затем нагрели до 75°С. Через 6 ч результирующую смесь охладили до комнатной температуры и удалили СО2. Полученный продукт промыли 100 мл ацетона и высушили. Содержание метилитаконата и метилакрилата в образце полимера определяли методом 1Н ЯМР (растворитель DMSO-d6).
Пример 7
Синтез сополимера акрилонитрила с этилитаконатом и метилакрилатом в среде СО2.
В ячейку, заполненную аргоном, поместили магнитный якорь, обезгаженную смесь, состоящую из 30 мл акрилонитрила, 0.85 мл метилакрилата и 0.746 г этилового эфира итаконовой кислоты, добавили 40 мг АИБН. После этого в ячейку при перемешивании добавили 45 г сверхкритического СО2, а затем нагрели до 75°С. Через 6 ч результирующую смесь охладили до комнатной температуры и удалили СО2. Полученный продукт промыли 100 мл ацетона и высушили. Содержание этилитаконата и метилакрилата в образце полимера определяли методом 1Н ЯМР (растворитель DMSO-d6).
Пример 8
Синтез сополимера акрилонитрила с моноамидом итаконовой кислоты и метилакрилатом в среде СО2.
В ячейку, заполненную аргоном, поместили магнитный якорь, обезгаженную смесь, состоящую из 30 мл акрилонитрила, 0.85 мл метилакрилата и 0.609 г моноамида итаконовой кислоты, добавили 40 мг АИБН. После этого в ячейку при перемешивании добавили 45 г сверхкритического СО2, а затем нагрели до 75°С. Через 6 ч результирующую смесь охладили до комнатной температуры и удалили СО2. Полученный продукт промыли 100 мл ацетона и высушили. Содержание метилакрилата и моноамида итаконовой кислоты в образце полимера определяли методом 1Н ЯМР (растворитель DMSO-d6).
Пример 9
Синтез сополимера акрилонитрила с н-гексиламидом итаконовой кислоты и метилакрилатом в среде СО2.
В ячейку, заполненную аргоном, поместили магнитный якорь, обезгаженную смесь, состоящую из 30 мл акрилонитрила, 0.85 мл метилакрилата и 1.006 г гексиламида итаконовой кислоты, добавили 40 мг АИБН. После этого в ячейку при перемешивании добавили 45 г сверхкритического СО2, а затем нагрели до 75°С. Через 6 ч результирующую смесь охладили до комнатной температуры и удалили СО2. Полученный продукт промыли 100 мл ацетона и высушили. Содержание метилакрилата и н-гексиламида итаконовой кислоты в образце полимера определяли методом 1Н ЯМР (растворитель DMSO-d6).
Пример 10
Синтез сополимера акрилонитрила с метилитаконатом и метилакрилатом в среде СО2.
В ячейку, заполненную аргоном, поместили магнитный якорь, обезгаженную смесь, состоящую из 30 мл акрилонитрила, 0.85 мл метилакрилата и 0.680 г метилового эфира итаконовой кислоты, добавили 40 мг АИБН. После этого в ячейку при перемешивании добавили 45 г сверхкритического СО2, а затем нагрели до 65°С. Через 6 ч результирующую смесь охладили до комнатной температуры и удалили СО2. Полученный продукт промыли 100 мл ацетона и высушили. Содержание метилитаконата и метилакрилата в образце полимера определяли методом 1Н ЯМР (растворитель DMSO-d6).
Пример 11
Синтез сополимера акрилонитрила с метилитаконатом и метилакрилатом в среде СО2.
В ячейку, заполненную аргоном, поместили магнитный якорь, обезгаженную смесь, состоящую из 30 мл акрилонитрила, 0.85 мл метилакрилата и 0.680 г метилового эфира итаконовой кислоты, добавили 40 мг АИБН. После этого в ячейку при перемешивании добавили 45 г сверхкритического CO2, а затем нагрели до 85°С. Через 6 ч результирующую смесь охладили до комнатной температуры и удалили СО2. Полученный продукт промыли 100 мл ацетона и высушили. Содержание метилитаконата и метилакрилата в образце полимера определяли методом 1Н ЯМР (растворитель DMSO-d6).
Как видно из сопоставления примеров 10 и 11 (см. Таблицу 1), при снижении температуры полимеризации до 65°С выход продукта снижается, а в его составе уменьшается доля сомономеров - метилитаконата и метилакрилата, но эти показатели все же остаются в приемлемом интервале значений. Дальнейшее снижение температуры полимеризации может привести к нарушению оптимального для получения углеродного волокна состава сополимера и значительному снижению его выхода.
Таким образом, предлагаемое техническое решение позволяет получить сополимеры акрилонитрила с производными итаконовой кислоты заданного состава экологически безопасным, экономичным и энергоэффективным способом.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СИНТЕЗА СОПОЛИМЕРОВ АКРИЛОНИТРИЛА С АКРИЛОВОЙ КИСЛОТОЙ | 2013 |
|
RU2550873C2 |
СПОСОБ СИНТЕЗА СОПОЛИМЕРОВ АКРИЛОНИТРИЛА С КОНТРОЛЕМ ПОЛИДИСПЕРСНОСТИ | 2013 |
|
RU2560173C2 |
СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРА АКРИЛОНИТРИЛА | 2016 |
|
RU2627264C1 |
СПОСОБ ПОЛУЧЕНИЯ 5-ЗАМЕЩЕННЫХ 1-Н-1,2,4-ТРИАЗОЛ-3-КАРБОНОВЫХ КИСЛОТ И ИХ ПРОИЗВОДНЫХ | 2010 |
|
RU2446163C2 |
КОНТРАСТНЫЕ АГЕНТЫ И ИХ ПРИМЕНЕНИЕ | 1993 |
|
RU2122432C1 |
СПОСОБ ПОЛУЧЕНИЯ СЛОИСТОГО ДВОЙНОГО ГИДРОКСИДА, МОДИФИЦИРОВАННОГО ОРГАНИЧЕСКИМИ СОЕДИНЕНИЯМИ | 2006 |
|
RU2426688C2 |
СОЕДИНЕНИЯ 2-АМИНОКАРБОНОВОЙ КИСЛОТЫ, ЗАМЕЩЕННОЙ 5-АРИЛИЗОКСАЗОЛ-4-ИЛОМ, И ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ НА ИХ ОСНОВЕ | 1994 |
|
RU2138488C1 |
ТРИЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ И ИХ ИСПОЛЬЗОВАНИЕ | 2016 |
|
RU2724100C2 |
ПРОИЗВОДНЫЕ КАРБОКСИЗАМЕЩЕННЫХ (ГЕТЕРО)АРОМАТИЧЕСКИХ КОЛЕЦ, СПОСОБ ИХ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ | 2016 |
|
RU2733750C2 |
ПОЛИМОРФНАЯ ФОРМА 4-[3-(4-ЦИКЛОПРОПАНКАРБОНИЛПИПЕРАЗИН-1-КАРБОНИЛ)-4-ФТОРБЕНЗИЛ]-2Н-ФТАЛАЗИН-1-ОНА | 2007 |
|
RU2465270C2 |
Настоящее изобретение относится к получению сополимеров акрилонитрила. Описан способ синтеза сополимеров акрилонитрила с производными итаконовой кислоты путем их смешения в среде растворителя с добавлением инициатора радикальной полимеризации и нагреванием, отличающийся тем, что нагревание осуществляют до температур 65÷85°С, в качестве растворителя используют сверхкритический диоксид углерода, в качестве производных итаконовой кислоты - ее моноэфиры или моноамиды, а содержание производных итаконовой кислоты в сополимере составляет от 0.01 до 4 мольных %. Также описан способ синтеза сополимеров акрилонитрила, производных итаконовой кислоты и метилакрилата путем их смешения в среде растворителя с добавлением инициатора радикальной полимеризации и нагреванием, отличающийся тем, что нагревание осуществляют до температур 65÷85°С, в качестве растворителя используют сверхкритический диоксид углерода, в качестве производных итаконовой кислоты - ее моноэфиры или моноамиды, а содержание производных итаконовой кислоты в сополимере составляет от 0.01 до 4 мольных % при содержании метилакрилата от 0.01 до 4 мольных %. Технический результат - получение сополимеров акрилонитрила с производными итаконовой кислоты экологически безопасным, экономичным и энергоэффективным способом, с высоким выходом. 2 н.п. ф-лы, 1 табл., 11 пр.
1. Способ синтеза сополимеров акрилонитрила с производными итаконовой кислоты путем их смешения в среде растворителя с добавлением инициатора радикальной полимеризации и нагреванием, отличающийся тем, что нагревание осуществляют до температур 65÷85°С, в качестве растворителя используют сверхкритический диоксид углерода, в качестве производных итаконовой кислоты - ее моноэфиры или моноамиды, а содержание производных итаконовой кислоты в сополимере составляет от 0.01 до 4 мольных %.
2. Способ синтеза сополимеров акрилонитрила, производных итаконовой кислоты и метилакрилата путем их смешения в среде растворителя с добавлением инициатора радикальной полимеризации и нагреванием, отличающийся тем, что нагревание осуществляют до температур 65÷85°С, в качестве растворителя используют сверхкритический диоксид углерода, в качестве производных итаконовой кислоты - ее моноэфиры или моноамиды, а содержание производных итаконовой кислоты в сополимере составляет от 0.01 до 4 мольных % при содержании метилакрилата от 0.01 до 4 мольных %.
СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРОВ НА ОСНОВЕ АКРИЛОНИТРИЛА | 1993 |
|
RU2084463C1 |
US 6914105 B1, 05.07.2005 | |||
US 6828363 B2, 07.12.2004, | |||
Способ получения полимера или сополимера акролонитрила | 1975 |
|
SU580844A3 |
СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРОВ АКРИЛОНИТРИЛА1_ | 0 |
|
SU376399A1 |
Авторы
Даты
2014-09-20—Публикация
2012-08-22—Подача