СЛОЖНЫЙ СИЛИКАТ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В НАНОАМОРФНОМ СОСТОЯНИИ Российский патент 2014 года по МПК C01B33/20 C09K11/77 

Описание патента на изобретение RU2534538C1

Изобретение относится к люминофорам красного цвета свечения, используемым для визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения в системах WLED и оптических дисплеях.

Известен люминофор состава SrY4(1-x)Eu4x(SiO43, где 0,1≤x≤0,8, (патент РФ 2379328, МПК C09K 11/79, 11/55, 11/59, 2010 год).

Недостатком известного люминофора является невысокая интенсивность красного свечения. Интенсивность красного свечения при 632,5 нм и при 708,4 нм составляет в сумме 37000 отн. ед. При этом интенсивность оранжевой компоненты при 590,3 нм составляет 7000 отн. ед. (18,5% от интенсивности красного излучения).

Известен нанолюминофор состава Ca2Gd8Si6O26: Eu (Sensors and Actuators В: Chemical V.146 (2010) P.395), имеющий нанокристаллические частицы сферической формы.

Недостатком этого люминофора является невысокая интенсивность красного излучения (30000 отн. ед.) в интервале длин волн 610-630 нм, а также значительная интенсивность оранжевого излучения в интервале 580-600 нм (25% от интенсивности красного излучения).

Известен люминофор в нанокристаллическом состоянии состава Sr2GdxY7.9-xEu0.1(SiO4)6O2 (Materials Chemistry and Physics, V.84 (2004), P.279).

Недостатком люминофора является невысокая интенсивность красного излучения (32000 отн. ед.) в интервале длин волн 620-700 нм и высокое отношение интенсивности оранжевого излучения (580-600 нм) к интенсивности красного излучения (22%).

Таким образом, перед авторами стояла задача разработать люминофор красного цвета свечения с более высокой интенсивностью излучения, при этом характеризующегося низкой интенсивностью оранжевого излучения.

Поставленная задача решена в предлагаемом сложном силикате редкоземельных элементов состава Sr2Gd8(1-x)Eu8xSi6O26 (0,001≤x≤0,5) в наноаморфном состоянии в качестве люминофора красного свечения.

В настоящее время в патентной и научно-технической литературе не описан люминофор предлагаемого состава в наноаморфном состоянии.

Спектр люминесценции предлагаемого люминофора состава Sr2Gd8(1.x)Eu8xSi6O26 (0,001≤x≤0,5) состоит из красного излучения (620-700 нм) с интенсивностью 670000-680000 отн. ед. и оранжевой компоненты (540-600 нм). При этом отношение интенсивности оранжевой компоненты к интенсивности красной компоненты составляет 14-16%. Таким образом, отношение интенсивности оранжевого свечения к красному для наноаморфного люминофора уменьшается по сравнению с известными люминофорами.

Резкое увеличение интенсивности красной компоненты и перераспределение интенсивностей красного и оранжевого свечения обусловлено, по-видимому, уменьшением безызлучательных потерь энергии возбуждения в наноаморфном состоянии за счет ослабления электронно-колебательного взаимодействия ионов Eu3+ с ближайшим кислородным окружением, что является следствием эффекта квантового ограничения в наноаморфных частицах.

Исследования, проведенные авторами, позволили сделать вывод, что новое соединение состава Sr2Gd8(1.x)Eu8xSi6O26, где 0,001≤x≤0,5, в виде наноаморфных частиц, обладающее свойством, которое позволяет использовать его в качестве люминофора в красной области свечения, может быть получено только при условии соблюдения значений 0,001≤x≤0,5. При несоблюдении этих значений целевой продукт образуется в виде смеси нанокристаллических и наноаморфных частиц. При этом наблюдается снижение интенсивности красного свечения (в 1,5 и более раз).

Люминофор в наноаморфном состоянии может быть получен следующим способом. Берут силикаты Sr2Gd8Si6O26 и Sr2Eu8Si6O26 в соотношении (0,999-0,5):(0,5-0,001) соответственно, тщательно перетирают указанные ингредиенты в присутствии этилового спирта, обжигают на воздухе при температуре 1300-1500°C в течение 100-115 ч поэтапно с измельчением смеси после каждого этапа: нагревают до 1300°C и выдерживают в течение 22-37 часов; затем продукт охлаждают и тщательно измельчают; нагревают до 1400°C и выдерживают в течение 19 часов, затем вновь продукт охлаждают и тщательно измельчают; нагревают до 1450°C и выдерживают в течение 26 часов, затем охлаждают и тщательно измельчают; нагревают до 1500°C и выдерживают в течение 33 часов, охлаждают и тщательно измельчают. Полученный продукт прессуют в таблетку диаметром 20-30 мм, высотой 5-12 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1400-1450°C в течение 40-45 часов. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент Ru 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 4-4,5 Па). Время испарения - 30-35 минут. Условия проведения процесса: ускоряющее напряжение в установке - 40-45 кВ, длительность импульса - 90-100 мкс, частота подачи импульсов - 90-100 Гц, ток пучка - 0,3-0,4 А. Контроль состава конечного продукта осуществляют химическим анализом. Контроль наноаморфного состояния проводят с помощью электронной микроскопии, рентгенофазового анализа (РФА) и электронографии. Люминесценцию возбуждают лазером с длиной волны 514,5 нм. Спектры люминесценции получают на спектрометре и регистрируют с помощью фотоэлектронного умножителя (ФЭУ).

Получение и применение нового соединения иллюстрируются следующими примерами.

Пример 1. Берут силикаты Sr2Gd8Si6O26 и Sr2Eu8Si6O26 в соотношении 0,813:0,187, соответственно, тщательно перетирают указанные ингредиенты в присутствии этилового спирта, обжигают на воздухе при температуре 1300-1500°C в течение 115 ч поэтапно с измельчением смеси после каждого этапа: нагревают до 1300°C и выдерживают в течение 37 часов; затем продукт охлаждают и тщательно измельчают; нагревают до 1400°C и выдерживают в течение 19 часов, затем вновь продукт охлаждают и тщательно измельчают; нагревают до 1450°C и выдерживают в течение 26 часов, затем охлаждают и тщательно измельчают; нагревают до 1500°C и выдерживают в течение 33 часов, охлаждают и тщательно измельчают. Полученный продукт прессуют в таблетку диаметром 30 мм, высотой 12 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1400°C в течение 40 часов. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент Ru 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 4-4,5 Па). Время испарения - 35 минут. Условия проведения процесса: ускоряющее напряжение в установке - 40 кВ, длительность импульса - 90 мкс, частота подачи импульсов - 90 Гц, ток пучка - 0,3 А. По данным химического анализа состав конечного продукта соответствует формуле Sr2Gd6,504Eu1,496Si6O26, где x=0,187. Наноаморфное состояние подтверждено данными электронной микроскопии, РФА и электронографии. Люминесценцию возбуждают лазером с длиной волны 514,5 нм. Спектр люминесценции состоит из красного излучения (620-700 нм) с интенсивностью 680000 отн. ед. и оранжевой компоненты (540-600 нм). Интенсивность оранжевой компоненты составляет 14% от интенсивности красного излучения.

Пример 2. Берут силикаты Sr6Gd8Si6O26 и Sr2Eu8Si6O26 в соотношении 0,5:0,5, соответственно, тщательно перетирают указанные ингредиенты в присутствии этилового спирта, обжигают на воздухе при температуре 1300-1500°C в течение 100 ч поэтапно с измельчением смеси после каждого этапа: нагревают до 1300°C и выдерживают в течение 22 часов; затем продукт охлаждают и тщательно измельчают; нагревают до 1400°C и выдерживают в течение 19 часов, затем вновь продукт охлаждают и тщательно измельчают; нагревают до 1450°C и выдерживают в течение 26 часов, затем охлаждают и тщательно измельчают; нагревают до 1500°C и выдерживают в течение 33 часов, охлаждают и тщательно измельчают. Полученный продукт прессуют в таблетку диаметром 20 мм, высотой 5 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1450°C в течение 45 часов. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент Ru 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 4-4,5 Па). Время испарения - 30 минут. Условия проведения процесса: ускоряющее напряжение в установке - 45 кВ, длительность импульса - 100 мкс, частота подачи импульсов - 100 Гц, ток пучка - 0.4 А. По данным химического анализа состав конечного продукта соответствует формуле Sr2Gd4Eu4Si6O26, где x=0,5. Наноаморфное состояние подтверждено данными электронной микроскопии, РФА и электронографии. Люминесценцию возбуждают лазером с длиной волны 514,5 нм. Спектр люминесценции состоит из красного излучения (620-700 нм) с интенсивностью 675000 отн. ед. и оранжевой компоненты (540-600 нм). Интенсивность оранжевой компоненты составляет 15% от интенсивности красного излучения.

Пример 3. Берут силикаты Sr2Gd8Si6O26 и Sr2Eu8Si6O26 в соотношении 0,999:0,001, соответственно, тщательно перетирают указанные ингредиенты в присутствии этилового спирта, обжигают на воздухе при температуре 1300-1500°C в течение 115 ч поэтапно с измельчением смеси после каждого этапа: нагревают до 1300°C и выдерживают в течение 37 часов; затем продукт охлаждают и тщательно измельчают; нагревают до 1400°C и выдерживают в течение 19 часов, затем вновь продукт охлаждают и тщательно измельчают; нагревают до 1450°C и выдерживают в течение 26 часов, затем охлаждают и тщательно измельчают; нагревают до 1500°C и выдерживают в течение 33 часов, охлаждают и тщательно измельчают. Полученный продукт прессуют в таблетку диаметром 30 мм, высотой 12 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1400°C в течение 40 часов. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент RU 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 4-4,5 Па). Время испарения - 35 минут. Условия проведения процесса: ускоряющее напряжение в установке - 40 кВ, длительность импульса - 90 мкс, частота подачи импульсов - 90 Гц, ток пучка - 0,3 А. По данным химического анализа состав конечного продукта соответствует формуле Sr2Gd7,992Eu0,008Si6O26, где х=0,001. Наноаморфное состояние подтверждено данными электронной микроскопии, РФА и электронографии. Люминесценцию возбуждают лазером с длиной волны 514,5 нм. Спектр люминесценции состоит из красного излучения (620-700 нм) с интенсивностью 670000 отн. ед. и оранжевой компоненты (540-600 нм). Интенсивность оранжевой компоненты составляет 16% от интенсивности красного излучения.

Таким образом, авторами предлагается новое химическое соединение состава Sr2Gd8(1-x)Eu8xSi6O26, где 0,001≤x≤0,5, которое может быть использовано в качестве люминофора красного света свечения.

Похожие патенты RU2534538C1

название год авторы номер документа
СИЛИКАТ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В НАНОАМОРФНОМ СОСТОЯНИИ 2014
  • Зуев Михаил Георгиевич
  • Соковнин Сергей Юрьевич
  • Ильвес Владислав Генрихович
  • Бакланова Инна Викторовна
RU2579135C1
СЛОЖНЫЙ СИЛИКАТ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В НАНОАМОРФНОМ СОСТОЯНИИ 2016
  • Зуев Михаил Георгиевич
  • Ильвес Владислав Генрихович
  • Соковнин Сергей Юрьевич
  • Васин Андрей Андреевич
RU2626020C1
Сложный танталат редкоземельных элементов в наноаморфном состоянии 2022
  • Зуев Михаил Георгиевич
RU2787472C1
Германат редкоземельных элементов в наноаморфном состоянии 2016
  • Зуев Михаил Георгиевич
  • Ильвес Владислав Генрихович
  • Соковнин Сергей Юрьевич
  • Васин Андрей Андреевич
RU2673287C2
СЛОЖНЫЙ СИЛИКАТ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Зуев Михаил Георгиевич
RU2379328C2
Биомедицинский материал для диагностики патологий в биологических тканях 2020
  • Зуев Михаил Георгиевич
  • Ларионов Леонид Петрович
RU2734957C1
СЛОЖНЫЙ КАЛЬЦИЕВЫЙ МЕТАСИЛИКАТ ЕВРОПИЯ И ИТТРИЯ, ЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ КРАСНОГО СВЕЧЕНИЯ НА ЕГО ОСНОВЕ ДЛЯ УЛЬТРАФИОЛЕТОВЫХ СВЕТОДИОДОВ И СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА 2011
  • Зубков Владимир Георгиевич
  • Сурат Людмила Львовна
  • Тютюнник Александр Петрович
  • Леонидов Иван Ильич
  • Мелкозерова Марина Александровна
RU2470982C2
СПОСОБ ПОЛУЧЕНИЯ ФОСФАТНОГО ЛЮМИНОФОРА СИНЕГО ЦВЕТА СВЕЧЕНИЯ 2017
  • Стеблевская Надежда Ивановна
  • Белобелецкая Маргарита Витальевна
  • Медков Михаил Азарьевич
RU2651028C1
Способ получения боратов лантана, легированных европием и тербием 2021
  • Белобелецкая Маргарита Витальевна
  • Стеблевская Надежда Ивановна
  • Медков Михаил Азарьевич
RU2761209C1
Способ получения ортоборатов лантана, допированных европием и висмутом 2021
  • Белобелецкая Маргарита Витальевна
  • Стеблевская Надежда Ивановна
  • Медков Михаил Азарьевич
RU2762551C1

Реферат патента 2014 года СЛОЖНЫЙ СИЛИКАТ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В НАНОАМОРФНОМ СОСТОЯНИИ

Изобретение может быть использовано для визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения в осветительных системах и оптических дисплеях. Сложный силикат редкоземельных элементов состава Sr2Gd8(1-x)Eu8xSi6O26 (0,001≤x≤0,5) в наноаморфном состоянии используют в качестве люминофора красного свечения. Предложенный люминофор обладает высокой интенсивностью красного свечения, при этом интенсивность оранжевого свечения к красному составляет 14-16%, т.е. уменьшена по сравнению с известными люминофорами. 3 пр.

Формула изобретения RU 2 534 538 C1

Сложный силикат редкоземельных элементов состава Sr2Gd8(1-x)Eu8xSi6O26 (0,001≤x≤0,5) в наноаморфном состоянии в качестве люминофора красного свечения.

Документы, цитированные в отчете о поиске Патент 2014 года RU2534538C1

СЛОЖНЫЙ СИЛИКАТ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Зуев Михаил Георгиевич
RU2379328C2
WO 2008060836 A2, 22.05.2008
BENLI CHU et
al, Luminescence and energy transfer in SrGdYLn(SiO)O (Ln= Sm, Dy, Eu), Materials Chemistry and Physics, 2004, V 84, p
АППАРАТ ДЛЯ ОБОГАЩЕНИЯ РУД ПО МЕТОДУ ВСПЛЫВАНИЯ 1915
SU279A1
G
SEETA RAMA RAJU et
al, The influence of sintering

RU 2 534 538 C1

Авторы

Зуев Михаил Георгиевич

Соковнин Сергей Юрьевич

Ильвес Владислав Генрихович

Бакланова Инна Викторовна

Даты

2014-11-27Публикация

2013-04-23Подача