Германат редкоземельных элементов в наноаморфном состоянии Российский патент 2018 года по МПК C01F17/00 B82B3/00 C09K11/77 B82Y40/00 C09K11/55 C09K11/66 C09K11/78 

Описание патента на изобретение RU2673287C2

Изобретение относится к люминофорам белого свечения, используемым для визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения в системах WLED и оптических дисплеях.

Известен люминофор белого свечения Sr0.8Ca1.2Y7.2(SiO4)6O2: 0.2Dy3+, 0.6Bi3+ (Qisheng Sun, Xuemin Li, Yide Du, Bo Zhao, Hua Li, Yan Huang, Zhipeng Ci, Jiachi Zhang, Ji Ma, and Yuhua Wang. Luminescence Mechanism and Thermal Stabilities of a White Silicate Phosphor for Multifunctional Applications. J. of the American Ceramic Society, 2016, October, p. 1-9).

Недостатком известного люминофора является отклонение цвета свечения от чисто белого в желто-зеленую область (цветовые координаты 0.3828;0.3999). Известен люминофор белого свечения на основе двойного ванадата цезия и цинка, имеющий состав, масс.%: CsZnVO4 99.94-99.98; Sm2O3 0.03-0.01; СеO2 0.03-0.01. Известный люминофор обеспечивает белый цвет свечения с цветовыми координатами (0.32; 0.34) (патент Ru 2526078; МПК C09K 11/55,82; 2014 г.).

Недостатком известного люминофора являются его невысокая термическая устойчивость, обусловленная достаточно низкой температурой плавления (850°С).

Таким образом, перед авторами стояла задача расширить номенклатуру люминофоров белого цвета свечения за счет разработки термоустойчивого состава.

Поставленная задача решена в предлагаемом германате редкоземельных элементов состава Ca2La8(1-х)EuGe6O26, где 0.05≤х≤0.15, в наноаморфном состоянии в качестве люминофора белого цвета свечения.

В настоящее время в патентной и научно-технической литературе не описан люминофор белого цвета свечения предлагаемого состава в наноаморфном состоянии.

Спектр свечения предлагаемых люминофоров состава Ca2La8(1-х)EuGe6O26 (0.05≤х≤0.15) в наноаморфном состоянии состоит из люминесценции с максимумом при 420 нм с интегральной интенсивностью IEu2+=15000-16690 отн. ед. и с максимумом при 620 нм с интегральной интенсивностью IEu3+ =3500-2830 отн. ед. Смешение этих двух видов излучения дает результирующее свечение белого цвета.

Исследования, проведенные авторами, позволили сделать вывод, что новое соединение состава Ca2La8(1-х)EuGe6O26, где 0.05≤х≤0.15, в наноаморфном состоянии, обладающее свойством, которое позволяет использовать его в качестве люминофора в белой области свечения, может быть получено только при условии соблюдения значений 0.05≤х≤0.15. При несоблюдении этих значений х целевой продукт образуется в виде смеси нанокристаллических и наноаморфных частиц и цвет свечения становится либо с розовым оттенком при х<0.05 (цветовые координаты 0.34; 0.29) либо с голубым оттенком при х>0.15 (цветовые координаты 0.30; 0.28).

Белое свечения обусловлено одновременно наличием ионов Eu3+ и ионов Eu2+, которые образуются в результате радиационного восстановления ионов Eu3+ в процессе получения соединения. Кроме того, при испарении состава Ca2La8(1-х)EuGe6O26, где 0.05≤х≤0.15 для получения наноаморфного состояния образуются дважды отрицательные вакансии в кристаллографических позициях, занимаемых ионами Са2+. Вакансии передают свой отрицательный заряд двум ионам Eu3+, что приводит к дополнительному образованию ионов Eu2+. Смешение излучений ионов Eu3+ и образовавшихся ионов Eu2+ дает результирующее свечение белого цвета.

Люминофор в наноаморфном состоянии может быть получен следующим способом. Берут CaCO3 и оксиды La2O3, Eu2O3, GeO2 в соотношении 2:(3.8-3.4):(0.2-0.6):6, соответственно. Компоненты CaCO3, La2O3, Eu2O3 растворяют в концентрированной азотной кислоте, а GeO2 растворяют в аммиаке (концентрация 2% об.). Перемешивают растворы и выпаривают в течение 2.5-3 ч. Затем смесь тщательно перетирают и обжигают на воздухе при температуре 1200-1250°С в течение 28-30 ч. Полученный продукт состава Ca2La8(1-х)EuGe6O26 (0.05≤х≤0.15) прессуют в таблетки диаметром 20-25 мм, высотой 15-20 мм при комнатной температуре и давлении 250-255 МПа. Затем таблетку отжигают при температуре 1050-1100°С в течение 8-10 ч. Полученную таблетку для испарения помещают в установку (патент Ru 2353573). Целевой продукт в наноаморфном состоянии получают путем испарения таблетки на стеклянную подложку в вакууме электронным пучком в газе низкого давления (остаточное давление 3 – 5.3 Па). В условия: ускоряющее напряжение в установке 38-40 кВ, длительность импульса 90 - 100 мкс, частота подачи импульсов – 40-50 Гц, ток пучка – 0.2-0.6 А. Контроль наноаморфного состояния проводят с помощью электронной микроскопии и электронографии. Контроль состава целевого продукта проверяют энергодисперсионным и химическим анализами. Люминесценцию возбуждают ксеноновой лампой с использованием светофильтра УФС-5. Спектры люминесценции получают на спектрометре и регистрируют с помощью фотоэлектронного умножителя (ФЭУ).

Получение и применения нового люминофора иллюстрируются следующими примерами.

Пример 1. Берут La2O3 - 15.1100 г., CaCO3 - 2.4425 г., Eu2O3 - 0.9775 г. и GeO2 - 7.6500 г. Компоненты CaCO3, La2O3, Eu2O3 растворяют в концентрированной азотной кислоте, а GeO2 растворяют в аммиаке (концентрация 2% об.). Перемешивают растворы и выпаривают в течение 2.5 ч. Затем смесь тщательно перетирают и обжигают на воздухе при температуре 1200°С в течение 28 ч. Полученный продукт состава Ca2La7.6Eu0.4Ge6O26 (х=0.05) прессуют в таблетку диаметром 20 мм, высотой 15 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1050°С в течение 8 ч. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент Ru 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 3 – 5.3 Па). Условия проведения процесса: ускоряющее напряжение в установке - 38 кВ, длительность импульса - 90 мкс, частота подачи импульсов - 40 Гц, ток пучка – 0.2 А. По данным химического и энергодисперсионного анализов состав конечного продукта соответствует формуле Ca2La7.6Eu0.4Ge6O26-δ, где δ – нестехиометрия (δ = 4.3, х = 0. 05). Наноаморфное состояние подтверждено данными электронной микроскопии и электронографии. Люминесценцию возбуждают ксеноновой лампой с использованием светофильтра УФС-5. Спектр люминесценции состоит из полосы с максимумом при 420 нм с интегральной интенсивностью 15000 отн. ед. и полосы с максимумом при 620 нм с интенсивностью 3500 отн. ед. Смешение этих двух видов излучения дает результирующее свечение белого цвета. Отношение интегральных интесивностей IEu2+/IEu3+=4.2 отн. ед. Цветовые координаты (0.34; 0.31). Термоустойчивость: температура плавления – 1300°С.

Пример 2. Берут La2O3 - 14.2825 г., CaCO3 - 2.4350 г., Eu2O3 - 1.7150 г. и GeO2 - 7.6475 г. Компоненты CaCO3, La2O3, Eu2O3 растворяют в концентрированной азотной кислоте, а GeO2 растворяют в аммиаке (концентрация 2 об. %). Перемешивают растворы и выпаривают в течение 2.8 часов. Затем смесь тщательно перетирают и обжигают на воздухе при температуре 1225°С в течение 29 ч. Полученный продукт состава Ca2La7.2Eu0.8Ge6O26 (х=0.1) прессуют в таблетку диаметром 22 мм, высотой 18 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1075°С в течение 9 ч. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент Ru 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 3 – 5.3 Па). Условия проведения процесса: ускоряющее напряжение в установке - 39 кВ, длительность импульса - 95 мкс, частота подачи импульсов - 45 Гц, ток пучка – 0.4 А. По данным химического и энергодисперсионного анализов состав конечного продукта соответствует формуле Ca2La7.2Eu0.8Ge6O26-δ, где δ = 5.0, х = 0.1. Наноаморфное состояние подтверждено данными электронной микроскопии и электронографии. Люминесценцию возбуждают ксеноновой лампой с использованием светофильтра УФС-5. Спектр люминесценции состоит из полосы с максимумом при 420 нм с интегральной интенсивностью 16000 отн. ед. и полосы с максимумом при 620 нм с интенсивностью 3000 отн. ед. Смешение этих двух видов излучений дает результирующее свечение белого цвета. Отношение IEu2+/IEu3+=5,3 отн. ед. Цветовые координаты (0.32; 0.32). Термоустойчивость: температура плавления – 1300°С.

Пример 3. Берут La2O3 - 13.4600 г., CaCO3 - 2,4325 г., Eu2O3 - 2.5650 г. и GeO2 - 7.6350 г. Компоненты CaCO3, La2O3, Eu2O3 растворяют в концентрированной азотной кислоте, а GeO2 растворяют в аммиаке (концентрация 2% об.). Перемешивают растворы и выпаривают в течение 3 ч. Затем смесь тщательно перетирают и обжигают на воздухе при температуре 1250°С в течение 30 ч. Полученный продукт состава Ca2La6.8Eu1.2Ge6O26 (х=0.15) прессуют в таблетку диаметром 30 мм, высотой 20 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1100°С в течение 10 ч. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент Ru 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 3 – 5.3 Па). Условия проведения процесса: ускоряющее напряжение в установке - 40 кВ, длительность импульса - 100 мкс, частота подачи импульсов - 50 Гц, ток пучка - 0,6 А. По данным химического и энергодисперсионного анализов состав конечного продукта соответствует формуле Ca2La6.8Eu1.2Ge6O26-δ, где δ = 5.2, х = 0.15. Наноаморфное состояние подтверждено данными электронной микроскопии и электронографии. Люминесценцию возбуждают ксеноновой лампой с использованием светофильтра УФС-5. Спектр люминесценции состоит из полосы с максимумом при 420 нм с интегральной интенсивностью 16900 отн. ед. и полосы с максимумом при 620 нм с интенсивностью 2830 отн. ед. Смешение этих двух видов излучений дает результирующее свечение белого цвета. Отношение IEu2+/IEu3+=5.9 отн. ед. Цветовые координаты (0.31; 0.31). Термоустойчивость: температура плавления – 1300°С.

Таким образом, авторы предлагают расширить номенклатуру люминофоров белого свечения за счет использования термоустойчивого люминофора состава Ca2La8(1-х)EuGe6O26 (0.05≤х≤0.15).

Похожие патенты RU2673287C2

название год авторы номер документа
СИЛИКАТ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В НАНОАМОРФНОМ СОСТОЯНИИ 2014
  • Зуев Михаил Георгиевич
  • Соковнин Сергей Юрьевич
  • Ильвес Владислав Генрихович
  • Бакланова Инна Викторовна
RU2579135C1
Сложный силикат редкоземельных элементов и способ его получения 2018
  • Васин Андрей Андреевич
  • Зуев Михаил Георгиевич
  • Зайнулин Юрий Галиулович
  • Кадырова Надежда Ивановна
  • Попов Иван Денисович
RU2686137C1
СЛОЖНЫЙ СИЛИКАТ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В НАНОАМОРФНОМ СОСТОЯНИИ 2016
  • Зуев Михаил Георгиевич
  • Ильвес Владислав Генрихович
  • Соковнин Сергей Юрьевич
  • Васин Андрей Андреевич
RU2626020C1
Сложный танталат редкоземельных элементов в наноаморфном состоянии 2022
  • Зуев Михаил Георгиевич
RU2787472C1
СЛОЖНЫЙ СИЛИКАТ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В НАНОАМОРФНОМ СОСТОЯНИИ 2013
  • Зуев Михаил Георгиевич
  • Соковнин Сергей Юрьевич
  • Ильвес Владислав Генрихович
  • Бакланова Инна Викторовна
RU2534538C1
Люминесцентный материал 2017
  • Кожевникова Нина Михайловна
  • Батуева Сэсэг Юрьевна
RU2657906C1
ЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ 2015
  • Кожевникова Нина Михайловна
  • Цыретарова Сэсэг Юрьевна
RU2593638C1
Сложный оксид алюминия и редкоземельных элементов и способ его получения 2020
  • Красильников Владимир Николаевич
  • Бакланова Инна Викторовна
RU2746650C1
Люминесцирующее оксифторидное стекло 2018
  • Батуева Сэсэг Юрьевна
  • Кожевникова Нина Михайловна
RU2703039C1
Биомедицинский материал для диагностики патологий в биологических тканях 2020
  • Зуев Михаил Георгиевич
  • Ларионов Леонид Петрович
RU2734957C1

Реферат патента 2018 года Германат редкоземельных элементов в наноаморфном состоянии

Изобретение может быть использовано в электронике. Германат редкоземельных элементов состава Ca2La8(1-х)EuGe6O26, где 0,05≤х≤0,15, в наноаморфном состоянии используют в качестве люминофора белого цвета свечения. Предложенное изобретение позволяет расширить номенклатуру люминофоров белого свечения, используемых для визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения в системах светодиодов белого свечения и оптических дисплеях. Предложенный люминофор обладает хорошей термоустойчивостью. 3 пр.

Формула изобретения RU 2 673 287 C2

Германат редкоземельных элементов состава Ca2La8(1-х)EuGe6O26, где 0.05≤х≤0.15, в наноаморфном состоянии в качестве люминофора белого цвета свечения.

Документы, цитированные в отчете о поиске Патент 2018 года RU2673287C2

EP 1577365 A1, 21.09.2005
ЛЮМИНОФОР БЕЛОГО СВЕЧЕНИЯ НА ОСНОВЕ ДВОЙНОГО ВАНАДАТА ЦЕЗИЯ ЦИНКА 2013
  • Галашов Евгений Николаевич
  • Мандрик Егор Михайлович
  • Московских Виталий Анатольевич
RU2526078C1
QISHENG SUN et al., Luminescence mechanism and thermal stabilities of a white silicate phospfor multifunctional applications, Journal of the American Ceramic Society, 2016, October, p
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
P
HARITHA et al., Optimizing white light luminescence in Dy 3+ -doped Lu 3 Ga 5 O 12 nano-garnets, Journal of Applied Physics 116, 2014, 174308.

RU 2 673 287 C2

Авторы

Зуев Михаил Георгиевич

Ильвес Владислав Генрихович

Соковнин Сергей Юрьевич

Васин Андрей Андреевич

Даты

2018-11-23Публикация

2016-12-20Подача