Изобретение относится к лабораторным методам оценки коррозионной активности реактивных топлив.
Необходимость разработки метода оценки коррозионной активности реактивных топлив вызвана тем, что в реактивных топливах допускается значительное количество общей и меркаптановой серы (0,25 и 0,003% масс соответственно), что обуславливает их повышенную коррозионную активность к металлам при повышенных температурах, и в конечном итоге оказывает негативное влияние на надежность работы авиационной техники.
При контакте реактивного топлива с металлами и сплавами, в процессе эксплуатации авиационной техники, возникает химическая коррозия за счет взаимодействия коррозионно-активных соединений серы с металлом. Из металлов медь наиболее подвержена химической коррозии от агрессивных соединений серы. Химическая коррозия оценивается при повышенных температурах (100°C и выше) различными лабораторными методами.
Известен визуальный метод оценки коррозионной активности реактивных топлив по ГОСТ 6321, предусматривающий оценку изменения цвета медной после выдержки ее в топливе в течение 3 часов при температуре 100°C. Этот качественный метод оценки коррозионной агрессивности топлив включен во все отечественные стандарты и зарубежные спецификации на реактивные топлива. Этот метод является визуальным и оценивает коррозионную активность топлив при температуре 100°C.
Ближайшим аналогом предлагаемого метода оценки коррозионной активности реактивных топлив является метод определения коррозионной активности при повышенных температурах по ГОСТ 18598. Этот метод предусматривает проведение испытаний при 120°C, длительностью 25 часов (5 этапов по 5 часов со сменой топлива после каждого этапа) и значительный объем топлива (8 литров) для испытаний. Недостатками данного метода является недостаточно высокая температура, длительность испытания, значительный объем топлива на испытания и незначительная убыль веса пластины после испытаний. Этим методом предусмотрено кроме меди оценивать, коррозионную активность на реальном сплаве бронза ВБ-23НЦ (содержащем медь), с которым контактирует топливо. Как показывает опыт оценки коррозионной активности авиационных топлив по ГОСТ 18598 с использованием сплава ВБ-23-НЦ, получаемые результаты практически не зависят от наличия коррозионно-активных соединений серы в топливе и имеют одинаковую величину, как для топлив с большим содержанием меркаптановой серы (до 0,005% масс), так и для топлив незначительным содержанием меркаптановой серы (менее 0,0003% масс).
Задачей предлагаемого изобретения является разработка способа оценки коррозионной активности реактивных топлив, обладающего достаточной чувствительностью к коррозионной активности реактивных топлив при значительном сокращении времени и используемого топлива при испытании.
Поставленная задача решается способом оценки коррозионной активности реактивных топлив, который заключается в определении убыли веса медьсодержащего материала, помещенного в топливо, до и после испытания, при повышенной температуре. Способ отличается тем, что в качестве медьсодержащего материала используют медную фольгу, которую помещают в топливо и выдерживают при температуре 150°C в течение 4 часов (2 этапа по 2 часа со сменой топлива после первого этапа) в герметично закрывающихся бомбах (металлических сосудах), причем чем больше убыль веса медной фольги до и после испытания, тем большей коррозионной активностью обладает реактивное топливо.
Повышение температуры испытания до 150°C значительно усиливает активность сернистых соединений по отношению к меди. Использование медной фольги вместо медной пластинки позволяет заметно увеличить ее активную площадь, выдержка медной фольги в топливе в течение 4 часов (2 этапа по 2 часа со сменой топлива после 1-го этапа) позволяет получить надежную величину коррозионной активности реактивных топлив и значительно сократить продолжительность испытания (4 часа вместо 25 часов) и объем топлива для испытания (500 см3 топлива вместо 4000 см3).
Для оценки коррозионной активности реактивных топлив используют аппарат ТСРТ-2, применяемый в настоящее время для оценки термоокислительной стабильности реактивных топлив в статических условиях по ГОСТ 11802. Нагрев топлива осуществляют в герметично закрывающихся бомбах, используемых в ГОСТ 11802.
В качестве медьсодержащего материала используют полоски медной фольги размером 50×150 мм. Перед испытанием полоски медной фольги обрабатывают шлифовальной шкуркой (зернистостью абразивного материала 6-8), шлифуют пастой «ГОИ» на войлоке или фетре, промывают петролейным эфиром (изооктаном), прополаскивают в этиловом спирте и высушивают между листами фильтровальной бумаги. После этого полоски медной фольги выдерживают для полного высушивания в эксикаторе 1 час и взвешивают с точностью до 0,0002 г. Подготовленные и взвешенные полоски медной фольги накручивают на спираль (изготовленную из стекла или фторопласта), имеющую 4-5 витков (для предотвращения касания стенок стакана), и помещают в стеклянный стакан. В стакан наливают 125 см3 реактивного топлива, для полного погружения медной фольги в топливо. Затем стакан с медной фольгой, погруженной в топливо, помещают в бомбу и накрывают стеклянной крышкой. На бомбу накручивают крышку с установленным на ней манометром. Подготовленные таким образом образцы помещают на 2 часа в прибор ТСРТ-2, имеющий температуру 150+/-2°C. Герметичность бомб контролируют по показаниям манометра. Через 2 часа бомбы вынимают из прибора ТСРТ-2 и охлаждают на воздухе в течение 50-60 минут. После охлаждения бомбы открывают, топливо сливают из стаканов, заливают порцию свежего топлива (125 см3), закрывают герметично бомбы и снова помещают на 2 часа в прибор ТСРТ-2, имеющий температуру 150+/-2°C. После второго этапа испытаний бомбы вынимают из прибора ТСРТ-2 и охлаждают на воздухе в течение 50-60 минут. После охлаждения бомбы открывают, полоски медной фольги вынимают из стакана и для промывки от топлива целиком погружают в емкость с петролейным эфиром или изооктаном. После этого пластинки помещают на фильтровальную бумагу и при помощи ватного тампона снимают отложения с поверхности пластин. Для удаления оставшихся отложений и продуктов коррозии пластинку помещают в стакан, в который наливают 30%-ный раствор серной кислоты так, чтобы он полностью покрывал поверхность пластинки. Пластинки несколько раз при помощи пинцета перемещают в растворе. Через 5 минут пластинки вынимают и очищают от остатков отложений и коррозии кисточкой или ватным тампоном, трижды промывают дистиллированной водой, промокают фильтровальной бумагой и помещают в эксикатор для полного высушивания на 1 час. Затем пластинки взвешивают с точностью до 0,0002 г.
Коррозионную активность реактивных топлив оценивают по уменьшению массы пластинки до и после испытания.
Сущность изобретения подтверждается примерами, представленными в таблице.
Как видно из приведенных в таблице данных, предлагаемый способ обладает достаточной чувствительностью к коррозионной активности реактивных топлив, содержащих не более 0,003% масс, меркаптановой серы, в отличие от способа по прототипу, для которого потеря массы пластинки при оценке коррозионной активности реактивных топлив с содержанием меркаптановой серы не более 0,003% масс, находится близко к точности взвешивания (0,0002 г). Это особенно важно с введением в действие Технического Регламента от 27.02.2008 №118 (с 2013 г. Технического Регламента Таможенного Союза 013/2011), в соответствии с которым в реактивных топливах ограничивается содержание меркаптановой серы не более 0,003% масс.
Таким образом, использование медной фольги вместо медной пластинки в предлагаемом способе позволяет заметно увеличить ее активную площадь, выдержка медной фольги в топливе в течение 4 часов (2 этапа по 2 часа со сменой топлива после 1-го этапа) позволяет получить надежную величину коррозионной активности реактивных топлив и значительно сократить продолжительность испытания (4 часа вместо 25 часов) и объем топлива для испытания (500 см3 топлива вместо 4000 см3).
название | год | авторы | номер документа |
---|---|---|---|
Способ оценки коррозионной активности реактивных топлив в динамических условиях | 2016 |
|
RU2625837C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОРРОЗИОННОЙ АКТИВНОСТИ ТОПЛИВ ДЛЯ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ | 2008 |
|
RU2378640C1 |
СПОСОБ ОЦЕНКИ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ РЕАКТИВНЫХ ТОПЛИВ | 2008 |
|
RU2368898C1 |
СПОСОБ АНТИКОРРОЗИОННОЙ ЗАЩИТЫ НЕФТЕПЕРЕРАБАТЫВАЮЩЕГО ОБОРУДОВАНИЯ | 2013 |
|
RU2538131C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ РЕАКТИВНЫХ ТОПЛИВ | 2000 |
|
RU2187107C2 |
СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА | 2002 |
|
RU2213125C1 |
СПОСОБ ПОЛУЧЕНИЯ ТОПЛИВА ДЛЯ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ | 2008 |
|
RU2374300C1 |
СПОСОБ ОЧИСТКИ ГАЗОКОНДЕНСАТОВ ОТ СЕРОСОДЕРЖАЩИХ ПРИМЕСЕЙ | 1999 |
|
RU2148071C1 |
СПОСОБ ПОЛУЧЕНИЯ РЕАКТИВНОГО ТОПЛИВА | 1994 |
|
RU2074233C1 |
ЗАЩИТНАЯ ПРИСАДКА К ТОПЛИВАМ | 1993 |
|
RU2054029C1 |
Изобретение относится к лабораторным методам оценки коррозионной активности реактивных топлив. Способ оценки коррозионной активности реактивных топлив заключается в определении убыли веса медьсодержащего материала, помещенного в топливо, до и после испытания, при повышенной температуре. При этом в качестве медьсодержащего материала используют медную фольгу, которую помещают в топливо и выдерживают в герметично закрывающихся бомбах, выполненных в виде металлических сосудов, при температуре 150±2°C в течение 4-х часов при проведении выдержки в 2 этапа по 2 часа со сменой топлива после первого этапа, причем чем больше убыль веса медной фольги до и после испытания, тем большей коррозионной активностью обладает реактивное топливо. Достигается повышение надежности и ускорение оценки. 1 табл.
Способ оценки коррозионной активности реактивных топлив, заключающийся в определении убыли веса медьсодержащего материала, помещенного в топливо, до и после испытания, при повышенной температуре, отличающийся тем, что в качестве медьсодержащего материала используют медную фольгу, которую помещают в топливо и выдерживают в герметично закрывающихся бомбах, выполненных в виде металлических сосудов, при температуре 150±2°C в течение 4-х часов при проведении выдержки в 2 этапа по 2 часа со сменой топлива, причем чем больше убыль веса медной фольги до и после испытания, тем большей коррозионной активностью обладает реактивное топливо.
Способ консервирования крови | 1929 |
|
SU18598A1 |
Метод определения | |||
коррозионной активности при повышенных температурах | |||
Введен в дейст- | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Кипятильник для воды | 1921 |
|
SU5A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОРРОЗИОННОЙ АКТИВНОСТИ ТОПЛИВ ДЛЯ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ | 2008 |
|
RU2378640C1 |
СПОСОБ ОЦЕНКИ КОРРОЗИОННОЙ АКТИВНОСТИ МОТОРНЫХ МАСЕЛ | 2006 |
|
RU2304764C1 |
Способ оценки коррозионных свойств моторных масел | 1959 |
|
SU129872A1 |
Способ определения защитных свойств моторных масел | 1985 |
|
SU1280496A1 |
Способ определения скорости коррозии материалов | 1982 |
|
SU1059489A1 |
Авторы
Даты
2014-12-20—Публикация
2013-06-18—Подача