СПОСОБ ОЦЕНКИ КОРРОЗИОННОЙ АКТИВНОСТИ РЕАКТИВНЫХ ТОПЛИВ Российский патент 2014 года по МПК G01N33/22 G01N17/00 

Описание патента на изобретение RU2536287C1

Изобретение относится к лабораторным методам оценки коррозионной активности реактивных топлив.

Необходимость разработки метода оценки коррозионной активности реактивных топлив вызвана тем, что в реактивных топливах допускается значительное количество общей и меркаптановой серы (0,25 и 0,003% масс соответственно), что обуславливает их повышенную коррозионную активность к металлам при повышенных температурах, и в конечном итоге оказывает негативное влияние на надежность работы авиационной техники.

При контакте реактивного топлива с металлами и сплавами, в процессе эксплуатации авиационной техники, возникает химическая коррозия за счет взаимодействия коррозионно-активных соединений серы с металлом. Из металлов медь наиболее подвержена химической коррозии от агрессивных соединений серы. Химическая коррозия оценивается при повышенных температурах (100°C и выше) различными лабораторными методами.

Известен визуальный метод оценки коррозионной активности реактивных топлив по ГОСТ 6321, предусматривающий оценку изменения цвета медной после выдержки ее в топливе в течение 3 часов при температуре 100°C. Этот качественный метод оценки коррозионной агрессивности топлив включен во все отечественные стандарты и зарубежные спецификации на реактивные топлива. Этот метод является визуальным и оценивает коррозионную активность топлив при температуре 100°C.

Ближайшим аналогом предлагаемого метода оценки коррозионной активности реактивных топлив является метод определения коррозионной активности при повышенных температурах по ГОСТ 18598. Этот метод предусматривает проведение испытаний при 120°C, длительностью 25 часов (5 этапов по 5 часов со сменой топлива после каждого этапа) и значительный объем топлива (8 литров) для испытаний. Недостатками данного метода является недостаточно высокая температура, длительность испытания, значительный объем топлива на испытания и незначительная убыль веса пластины после испытаний. Этим методом предусмотрено кроме меди оценивать, коррозионную активность на реальном сплаве бронза ВБ-23НЦ (содержащем медь), с которым контактирует топливо. Как показывает опыт оценки коррозионной активности авиационных топлив по ГОСТ 18598 с использованием сплава ВБ-23-НЦ, получаемые результаты практически не зависят от наличия коррозионно-активных соединений серы в топливе и имеют одинаковую величину, как для топлив с большим содержанием меркаптановой серы (до 0,005% масс), так и для топлив незначительным содержанием меркаптановой серы (менее 0,0003% масс).

Задачей предлагаемого изобретения является разработка способа оценки коррозионной активности реактивных топлив, обладающего достаточной чувствительностью к коррозионной активности реактивных топлив при значительном сокращении времени и используемого топлива при испытании.

Поставленная задача решается способом оценки коррозионной активности реактивных топлив, который заключается в определении убыли веса медьсодержащего материала, помещенного в топливо, до и после испытания, при повышенной температуре. Способ отличается тем, что в качестве медьсодержащего материала используют медную фольгу, которую помещают в топливо и выдерживают при температуре 150°C в течение 4 часов (2 этапа по 2 часа со сменой топлива после первого этапа) в герметично закрывающихся бомбах (металлических сосудах), причем чем больше убыль веса медной фольги до и после испытания, тем большей коррозионной активностью обладает реактивное топливо.

Повышение температуры испытания до 150°C значительно усиливает активность сернистых соединений по отношению к меди. Использование медной фольги вместо медной пластинки позволяет заметно увеличить ее активную площадь, выдержка медной фольги в топливе в течение 4 часов (2 этапа по 2 часа со сменой топлива после 1-го этапа) позволяет получить надежную величину коррозионной активности реактивных топлив и значительно сократить продолжительность испытания (4 часа вместо 25 часов) и объем топлива для испытания (500 см3 топлива вместо 4000 см3).

Для оценки коррозионной активности реактивных топлив используют аппарат ТСРТ-2, применяемый в настоящее время для оценки термоокислительной стабильности реактивных топлив в статических условиях по ГОСТ 11802. Нагрев топлива осуществляют в герметично закрывающихся бомбах, используемых в ГОСТ 11802.

В качестве медьсодержащего материала используют полоски медной фольги размером 50×150 мм. Перед испытанием полоски медной фольги обрабатывают шлифовальной шкуркой (зернистостью абразивного материала 6-8), шлифуют пастой «ГОИ» на войлоке или фетре, промывают петролейным эфиром (изооктаном), прополаскивают в этиловом спирте и высушивают между листами фильтровальной бумаги. После этого полоски медной фольги выдерживают для полного высушивания в эксикаторе 1 час и взвешивают с точностью до 0,0002 г. Подготовленные и взвешенные полоски медной фольги накручивают на спираль (изготовленную из стекла или фторопласта), имеющую 4-5 витков (для предотвращения касания стенок стакана), и помещают в стеклянный стакан. В стакан наливают 125 см3 реактивного топлива, для полного погружения медной фольги в топливо. Затем стакан с медной фольгой, погруженной в топливо, помещают в бомбу и накрывают стеклянной крышкой. На бомбу накручивают крышку с установленным на ней манометром. Подготовленные таким образом образцы помещают на 2 часа в прибор ТСРТ-2, имеющий температуру 150+/-2°C. Герметичность бомб контролируют по показаниям манометра. Через 2 часа бомбы вынимают из прибора ТСРТ-2 и охлаждают на воздухе в течение 50-60 минут. После охлаждения бомбы открывают, топливо сливают из стаканов, заливают порцию свежего топлива (125 см3), закрывают герметично бомбы и снова помещают на 2 часа в прибор ТСРТ-2, имеющий температуру 150+/-2°C. После второго этапа испытаний бомбы вынимают из прибора ТСРТ-2 и охлаждают на воздухе в течение 50-60 минут. После охлаждения бомбы открывают, полоски медной фольги вынимают из стакана и для промывки от топлива целиком погружают в емкость с петролейным эфиром или изооктаном. После этого пластинки помещают на фильтровальную бумагу и при помощи ватного тампона снимают отложения с поверхности пластин. Для удаления оставшихся отложений и продуктов коррозии пластинку помещают в стакан, в который наливают 30%-ный раствор серной кислоты так, чтобы он полностью покрывал поверхность пластинки. Пластинки несколько раз при помощи пинцета перемещают в растворе. Через 5 минут пластинки вынимают и очищают от остатков отложений и коррозии кисточкой или ватным тампоном, трижды промывают дистиллированной водой, промокают фильтровальной бумагой и помещают в эксикатор для полного высушивания на 1 час. Затем пластинки взвешивают с точностью до 0,0002 г.

Коррозионную активность реактивных топлив оценивают по уменьшению массы пластинки до и после испытания.

Сущность изобретения подтверждается примерами, представленными в таблице.

Как видно из приведенных в таблице данных, предлагаемый способ обладает достаточной чувствительностью к коррозионной активности реактивных топлив, содержащих не более 0,003% масс, меркаптановой серы, в отличие от способа по прототипу, для которого потеря массы пластинки при оценке коррозионной активности реактивных топлив с содержанием меркаптановой серы не более 0,003% масс, находится близко к точности взвешивания (0,0002 г). Это особенно важно с введением в действие Технического Регламента от 27.02.2008 №118 (с 2013 г. Технического Регламента Таможенного Союза 013/2011), в соответствии с которым в реактивных топливах ограничивается содержание меркаптановой серы не более 0,003% масс.

Таким образом, использование медной фольги вместо медной пластинки в предлагаемом способе позволяет заметно увеличить ее активную площадь, выдержка медной фольги в топливе в течение 4 часов (2 этапа по 2 часа со сменой топлива после 1-го этапа) позволяет получить надежную величину коррозионной активности реактивных топлив и значительно сократить продолжительность испытания (4 часа вместо 25 часов) и объем топлива для испытания (500 см3 топлива вместо 4000 см3).

Таблица Определение коррозионной активности реактивных топлив № п/п Марка реактивного топлива Содержание меркаптановой серы Потеря массы медной пластины, г ГОСТ 18598(прототип) Предлагаемый способ 1 ТС-1 0,0004 0,0005 0,0029 2 0,002 0,0002 0,0040 3 0,003 0,0075 0,0090 4 0,0039 0,0085 0,0100 5 0,004 0,0042 0,0110 6 0,0042 0,0083 0,0090 7 0,0045 0,0067 0,0098 8 0,0050 0,0122 0,0133 9 РТ отс 0,0004 0,0018 10 отс 0,0005 0,0015 11 отс 0,0007 0,0030 12 отс 0,0008 0,0030 13 отс 0,0014 0,0043 14 отс 0,0000 0,0015 15 Т-6 отс 0,0004 0,0028 16 отс 0,0005 0,0030 17 отс 0,0006 0,0038

Похожие патенты RU2536287C1

название год авторы номер документа
Способ оценки коррозионной активности реактивных топлив в динамических условиях 2016
  • Никитин Игорь Михайлович
  • Сузиков Владимир Викторович
  • Прокопцова Мария Дмитриевна
  • Лихтерова Наталья Михайловна
  • Кондратенко Валерий Викторович
RU2625837C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОРРОЗИОННОЙ АКТИВНОСТИ ТОПЛИВ ДЛЯ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ 2008
  • Астафьев Валерий Александрович
  • Исаев Александр Васильевич
  • Тимофеев Федор Владимирович
  • Кузнецов Андрей Александрович
  • Сузиков Владимир Викторович
RU2378640C1
СПОСОБ ОЦЕНКИ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ РЕАКТИВНЫХ ТОПЛИВ 2008
  • Кишкилев Георгий Николаевич
  • Астафьев Валерий Александрович
  • Исаев Александр Васильевич
  • Саутенко Алексей Александрович
  • Фахрутдинов Марат Иматдинович
RU2368898C1
СПОСОБ АНТИКОРРОЗИОННОЙ ЗАЩИТЫ НЕФТЕПЕРЕРАБАТЫВАЮЩЕГО ОБОРУДОВАНИЯ 2013
  • Томин Виктор Петрович
  • Силинская Яна Николаевна
  • Рудова Наталья Николаевна
  • Мозилина Ольга Юрьевна
RU2538131C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ РЕАКТИВНЫХ ТОПЛИВ 2000
  • Трубкин А.Ю.
RU2187107C2
СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА 2002
  • Кондрашева Н.К.
  • Семёнов В.М.
  • Кондрашев Д.О.
  • Безруков А.В.
RU2213125C1
СПОСОБ ПОЛУЧЕНИЯ ТОПЛИВА ДЛЯ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ 2008
  • Галиев Ринат Галиевич
  • Хавкин Всеволод Артурович
  • Гуляева Людмила Алексеевна
  • Бушуева Елизавета Михайловна
  • Бабынин Александр Александрович
  • Пресняков Владимир Васильевич
  • Тульчинский Эдуард Авраамович
RU2374300C1
СПОСОБ ОЧИСТКИ ГАЗОКОНДЕНСАТОВ ОТ СЕРОСОДЕРЖАЩИХ ПРИМЕСЕЙ 1999
  • Пантух Б.И.(Ru)
  • Егоричева С.А.(Ru)
  • Шульманас Сергеюс Владимирович
RU2148071C1
СПОСОБ ПОЛУЧЕНИЯ РЕАКТИВНОГО ТОПЛИВА 1994
  • Радченко Е.Д.
  • Демьяненко Е.А.
  • Хавкин В.А.
  • Курганов В.М.
  • Мелик-Ахназаров Т.Х.О.
  • Стуре Н.Н.
  • Бирюков Ф.И.
  • Карибов А.К.
  • Хандархаев С.В.
  • Оразсахатов К.С.
  • Гончаров А.Н.
  • Гуляева Л.А.
  • Бычкова Д.М.
  • Лощенкова И.Н.
  • Санников А.Л.
RU2074233C1
ЗАЩИТНАЯ ПРИСАДКА К ТОПЛИВАМ 1993
  • Михалкин А.П.
RU2054029C1

Реферат патента 2014 года СПОСОБ ОЦЕНКИ КОРРОЗИОННОЙ АКТИВНОСТИ РЕАКТИВНЫХ ТОПЛИВ

Изобретение относится к лабораторным методам оценки коррозионной активности реактивных топлив. Способ оценки коррозионной активности реактивных топлив заключается в определении убыли веса медьсодержащего материала, помещенного в топливо, до и после испытания, при повышенной температуре. При этом в качестве медьсодержащего материала используют медную фольгу, которую помещают в топливо и выдерживают в герметично закрывающихся бомбах, выполненных в виде металлических сосудов, при температуре 150±2°C в течение 4-х часов при проведении выдержки в 2 этапа по 2 часа со сменой топлива после первого этапа, причем чем больше убыль веса медной фольги до и после испытания, тем большей коррозионной активностью обладает реактивное топливо. Достигается повышение надежности и ускорение оценки. 1 табл.

Формула изобретения RU 2 536 287 C1

Способ оценки коррозионной активности реактивных топлив, заключающийся в определении убыли веса медьсодержащего материала, помещенного в топливо, до и после испытания, при повышенной температуре, отличающийся тем, что в качестве медьсодержащего материала используют медную фольгу, которую помещают в топливо и выдерживают в герметично закрывающихся бомбах, выполненных в виде металлических сосудов, при температуре 150±2°C в течение 4-х часов при проведении выдержки в 2 этапа по 2 часа со сменой топлива, причем чем больше убыль веса медной фольги до и после испытания, тем большей коррозионной активностью обладает реактивное топливо.

Документы, цитированные в отчете о поиске Патент 2014 года RU2536287C1

Способ консервирования крови 1929
  • Куренков С.С.
SU18598A1
Метод определения
коррозионной активности при повышенных температурах
Введен в дейст-
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
СПОСОБ ОПРЕДЕЛЕНИЯ КОРРОЗИОННОЙ АКТИВНОСТИ ТОПЛИВ ДЛЯ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ 2008
  • Астафьев Валерий Александрович
  • Исаев Александр Васильевич
  • Тимофеев Федор Владимирович
  • Кузнецов Андрей Александрович
  • Сузиков Владимир Викторович
RU2378640C1
СПОСОБ ОЦЕНКИ КОРРОЗИОННОЙ АКТИВНОСТИ МОТОРНЫХ МАСЕЛ 2006
  • Волгин Сергей Николаевич
  • Исаев Александр Васильевич
  • Тимофеев Федор Владимирович
  • Кузнецов Андрей Александрович
  • Бартко Руслан Владимирович
  • Артемьев Владимир Александрович
RU2304764C1
Способ оценки коррозионных свойств моторных масел 1959
  • Зарубин А.И.
  • Захаров Г.В.
  • Папок К.К.
SU129872A1
Способ определения защитных свойств моторных масел 1985
  • Ивлева Ольга Федоровна
  • Энглин Александр Борисович
  • Лазаренко Виталий Петрович
  • Майко Лев Павлович
  • Чуршуков Евгений Сергеевич
  • Лашхи Вадим Ливонович
SU1280496A1
Способ определения скорости коррозии материалов 1982
  • Серегин Евгений Петрович
  • Петров Владимир Иванович
  • Горенков Анатолий Федорович
  • Озеров Евгений Александрович
  • Стотланд Самуил Иосифович
  • Самойлов Игорь Борисович
  • Бугай Владимир Тимофеевич
SU1059489A1

RU 2 536 287 C1

Авторы

Бушуева Елизавета Михайловна

Белоусов Александр Ильич

Атаева Марина Васильевна

Бабин Олег Александрович

Кулинич Александр Леонидович

Саламатин Денис Игоревич

Даты

2014-12-20Публикация

2013-06-18Подача