ЖАРОПРОЧНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ Российский патент 2015 года по МПК C22C38/54 

Описание патента на изобретение RU2543583C2

Изобретение относится к области металлургии коррозионностойких жаропрочных сталей, предназначенных для использования в качестве материала для энергетического машиностроения при производстве различного теплообменного оборудования в тепловой и атомной энергетике.

В настоящее время для работы при температурах до 600°C применяются стали марок 15Х11МФБ, 12Х11 В2МФ, 15Х12 ВНМФ, 1.4914 [1-8].

Однако известные стали не обеспечивают требуемого уровня длительной прочности при высоких температурах и стойкости против питтинговой коррозии.

Наиболее близким к заявленному составу стали является жаропрочная сталь №1.4914 [8], содержащая, мас.%:

углерод 0,11-0,19 кремний 0,15-0,65 марганец 0,20-1,25 хром 10,0-12,0 никель 0,50-1,20 молибден 0,4-1,00 ванадий 0,10-0,70 ниобий 0,10-0,60 азот 0,03-0,09 фосфор ≤0,03 медь ≤0,3 сера ≤0,03 железо остальное

Данная марка предназначена для работы в качестве материала оборудования тепловых станций.

Недостатком известной стали является недостаточный уровень характеристик жаропрочности в условиях длительной высокотемпературной эксплуатации. Известной композиции свойственен широкий разброс и низкий уровень кратковременных механических свойств. В этой стали содержание легирующих и примесных элементов, определяющих уровень его важнейших функциональных характеристик, находится в широких концентрационных пределах. Поскольку в известной стали содержится большое количество углерода, фосфора, серы и меди, стойкость против питтинговой коррозии не удовлетворяет требованиям, предъявляемым к материалам современных энергоустановок.

Техническим результатом изобретения является создание жаропрочной коррозионностойкой свариваемой стали, обладающей улучшенным комплексом механических свойств, т.е. более высокими по сравнению с известными материалами значениями кратковременной и длительной прочности, а также стойкостью против питтинговой коррозии.

Технический результат достигается за счет того, что в сталь, содержащую углерод, марганец, кремний, хром, никель, молибден, ванадий, ниобий, азот, фосфор, серу, медь, железо, дополнительно введены кальций, церий, алюминий и бор при следующем соотношении компонентов, в вес.%:

углерод 0,06-0,10 кремний 0,02-0,3 марганец 0,3-0,8 хром 11,5-13,0 никель 0,8-1,2 молибден от 0,8 до менее 1,0 ванадий 0,15-0,30 ниобий 0,05-0,15 азот от более 0,04 до 0,07 бор 0,001-0,005 сера 0,001-0,010 фосфор 0,001-0,015 алюминий 0,05-0,15 медь 0,01-0,10 кальций от более 0,005 до 0,015 церий от более 0,01 до 0,05 железо остальное

При этом суммарное содержание углерода и азота не должно превышать 0,16%.

Соотношение указанных легирующих элементов и принятые ограничения выбраны таким образом, чтобы сталь обеспечивала требуемый уровень механических, коррозионных и технологических свойств.

Для повышения длительной прочности обычно вводят углерод, который образует карбиды хрома. При длительной эксплуатации при высоких температурах (600°C) карбиды хрома довольно быстро коагулируют.

Кратковременная и длительная прочность заметно падают. Для исключения такого падения необходимо в заявляемой стали снизить содержание углерода (вместо 0,11-0,19% необходимо 0,06-0,10% С).

Содержание углерода менее 0,06% не обеспечивает необходимого уровня кратковременных механических свойств и пределов длительной прочности. Повышение углерода свыше 0,10% нецелесообразно, так как ухудшает свариваемость стали и коррозионные свойства.

Термическая обработка заявляемой стали представляет собой нормализацию при 1050°C и отпуск при температуре 740-760°C. Структура стали представляет собой отпущенный мартенсит с высокой плотностью дислокации. Следует заметить, что при ковке и термообработке стали выделяются карбиды хрома и молибдена, а также карбонитриды и нитриды ванадия и ниобия, однако в твердом растворе остается еще 50-60% азота. Свободный азот при эксплуатации диффундирует к дислокациям и образует на них дисперсные нитриды (MX), обладающие высокой стабильностью при воздействии повышенных температур и высоких напряжений. Выделения представляют собой нитриды ванадия и ниобия. Для их выделения необходимо иметь содержание азота в пределах от более 0,04 до 0,07%, ванадия 0,15-0,30% и ниобия 0,05-0,15%. Суммарное содержание углерода и азота не должно превышать 0,16%, т.к. их большее содержание приведет к ухудшению свариваемости.

Содержание ванадия в пределах 0,15-0,30% и ниобия 0,05-0,15% обеспечивает получение стойких мелких нитридов на дислокациях, что повышает длительную прочность. Большее содержание ванадия и ниобия (0,7 и 0,6%), как в известной стали (1.4914), приведет к появлению феррита, снижению длительной прочности, ухудшению технологичности при сварке.

Таким образом, повышение жаропрочности заявляемой стали осуществляется как за счет карбонитридов, так и за счет нитридов, осевших на дислокациях в процессе эксплуатации. Поэтому зависимость длительной прочности от времени для заявляемой стали более пологая, чем для известной.

Молибден в количестве от 0,8 до менее 1,0% упрочняет твердый раствор, а также входит в состав карбидов типа Ме23С6 и затрудняет их коагуляцию [2], что повышает жаропрочные свойства. Содержание молибдена менее 0,8% не обеспечивает прочность стали при повышенных температурах. Известно, что молибден повышает сопротивление питтинговой коррозии.

В заявляемой стали изменен нижний предел по содержанию никеля (вместо 0,5% необходимо увеличить до 0,8%). При низком содержании никеля в стали повысится содержание феррита, что приведет к понижению прочностных свойств (как кратковременных, так и длительных).

Для повышения длительной прочности и стойкости против питтингообразования необходимо максимально уменьшить содержание серы, фосфора и меди.

Сера, фосфор и медь обычно расположены на границах зерен, создают легкоплавкие эвтектики и приводят к понижению длительных пластичности и прочности, поэтому их содержание должно быть минимальным. В заявляемой стали их содержание должно быть (S<0,010%, Р≤0,015%, Cu≤0,10%). Это приводит к стабильности прочностных и коррозионных свойств. Для очистки границ зерен от легкоплавких эвтектик в сталь вводят кальций и церий, чтобы окончательно обезвредить вредное влияние серы, фосфора и меди.

Алюминий вводили в заявляемую сталь для более полного раскисления стали при выплавке, так как алюминий является более сильным раскислителем, чем кремний. Поэтому верхняя граница содержания кремния была снижена до 0,3%.

Введение бора в количестве до 0,005% повышает сопротивление деформации при ползучести. Бор сегрегирует по границам зерен, что подавляет зернограничное проскальзывание и тем самым повышает время до разрушения. Входя в состав карбидов типа Ме23С6, бор уменьшает скорость их коагуляции при повышенных температурах, что повышает сопротивление деформации при ползучести.

Легирование с указанным соотношением легирующих и примесных элементов обеспечивает образование под воздействием условий эксплуатации выделений на образующихся дислокациях за время от 10 до 30 тыс. часов. Закрепление дислокации наночастицами (MX) и последующее их растворение и образование наночастиц на других дислокациях, закрепляющих их, создает динамическое равновесие между образованием и растворением наноразмерных частиц типа MX. Это приводит к уменьшению скорости ползучести и увеличению длительной прочности.

Таким образом, заявляемая сталь обладает высоким сопротивлением ползучести за счет саморегулирования структуры в процессе эксплуатации. В заявляемой стали наблюдается равномерное распределение легирующих элементов и неметаллических включений, в ней тоньше и чище границы зерен, т.к. контролируется чистота металла по остаточным вредным примесям путем снижения верхней границы их присутствия и связывания их остатков в температуроустойчивые соединения путем добавления кальция и церия.

На Челябинском меткомбинате были выплавлены 4 опытно-промышленные плавки весом по 300 кг. Металл выплавлялся в вакуумно-индукционных печах. Полученный металл подвергался обработке давлением на промышленном кузнечно-прессовом оборудовании. Поковки подвергали термической обработке:

нормализация при 1050°C и отпуск при 750°C.

После термообработки были изготовлены образцы на статическое растяжение, длительную прочность и коррозионную стойкость.

Химический состав исследованных материалов приведен в табл.1. При статическом растяжении по ГОСТ 9651-84 определялись механические свойства при 550 и 600°C. Результаты представлены в табл.2. Испытания на длительную прочность проводились при 550 и 600°C и времени испытания до 6000 часов. Было испытано по 8-10 образцов каждой плавки. На базе этих испытаний определялся предел длительной прочности за 1·104 часов при 550 и 600°C.

Результаты, представленные в табл.2, свидетельствуют о том, что заявляемая сталь имеет более высокие временное сопротивление и предел текучести при 550 и 600°C, а также пределы длительной прочности по сравнению с известной сталью.

Оценку стойкости против питтинговой коррозии проводили по ГОСТ 9.912-89.

Испытания проводили в 3% растворе NaCl при 20 и 50°C в течение 5 часов согласно ГОСТ 9.912-89. Определялись потери веса образцов и рассчитывалась средняя скорость коррозии, определяющая стойкость против питтинговой коррозии.

Результаты оценки стойкости против питтинговой коррозии приведены в таблице 3.

Таблица 3 Коррозионная стойкость заявляемой и известной сталей Сталь Условный номер № Средняя скорость коррозии, микр/год при 20°C при 50°C Предлагаемая 1 0,056 4,18 2 0,0447 4,91 3 0,0551 4,45 Известная 4 0,660 5,57

Примечание. Средняя скорость коррозии оценивалась по 5 образцам каждой плавки. Чем выше средняя скорость коррозии, тем меньше стойкость против питтинговой коррозии.

Скорость коррозии, по которой оценивается стойкость к питтингообразованию по ГОСТ 9.912-89, для предлагаемой стали ниже как при температуре испытания 20°C, так и при 50°C. Это свидетельствует о преимуществе предлагаемой стали по сравнению с известной по стойкости против питтинговой коррозии.

Ожидаемый технико-экономический эффект, обусловленный более высокой длительной прочностью и стойкостью против питтинговой коррозии, выразится в увеличении срока эксплуатации и в повышении надежности энергетического оборудования, конструкционным материалом которого будет являться предлагаемая сталь.

Таблица 1 Химический состав заявляемой и известной марок стали Сталь Условн. № плавки Содержание элементов в мас.% С Si Mn Cr Ni Mo V Nb N S P Cu Се Са В А1 Ре S+P C+N Предлагаемая 1 0,06 0,02 0,8 11,5 1,2 0,8 0,15 0,12 0,07 0,001 0,015 0,10 0,05 0,006 0,001 0,05 ост. 0,016 0,13 2 0,07 0,3 0,5 12,0 1,0 0,99 0,23 0,05 0,05 0,006 0,010 0,05 0,03 0,01 0,002 0,10 ост. 0,020 0,12 3 0,10 0,20 0,3 13,0 0,8 0,9 0,30 0,15 0,041 0,010 0,008 0,01 0,011 0,015 0,005 0,15 ост. 0,016 0,141 Известная 4 0,12 0,50 0.8 11,0 0,6 0,6 0,40 0,50 0,04 0,020 0,025 0,3 - - - - ост. 0,045 0,16

Таблица 2 Механические свойства заявляемой и известной марок стали Сталь Условн. № плавки Механические свойства Предел длительной прочности за 1·104 час, МПа при 550°C при 600°C при 550°C при 600°C σB σ0,2 δ σВ σ0,2 5 Предлагаемая 1 600 543 16,5 461 432 18 176 117 2 537 452 18,5 402 394 20 168 111 3 440 394 20 367 338 26 162 108 Известная 4 435 390 20,0 360 300 20 150 100

Источники информации

1. Патент RU 2404281 С1, 20.11.2010.

2. Патент RU 2447184 С1, 28.02.2011.

3. Патент RU 2270269 C1, 20.02.2006.

4. Патент RU 2346074 C2, 10.02.2009.

5. Патент US 6899773132, 31.05.2005.

6. М.В. Костина, О.А. Банных, В.М. Блинов, А.В. Дымов. Легированные азотом хромистые коррозионностойкие стали нового поколения. М.: Материаловедение, №2 [47], 2011, с.35.

7. Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные - ГОСТ 5632-72 «Марки и технические требования». М., 1982, с.14.

8. R.L. Klueh, D.R. Harries «High-Chromium Ferritic and Martensitic Steels for Nuclear Applications» ASTM International, 2001, p.8.

9. И.Я. Сокол, Е.А. Ульянин, Э.Г. Фельдгандлер. Структура и коррозия металлов и сплавов. Атлас. - «Металлургия». - Москва, 1969. - 400 с.

Похожие патенты RU2543583C2

название год авторы номер документа
АУСТЕНИТНАЯ ЖАРОПРОЧНАЯ И КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2015
  • Карзов Георгий Павлович
  • Кудрявцев Алексей Сергеевич
  • Трапезников Юрий Михайлович
  • Артемьева Дарина Александровна
  • Охапкин Кирилл Алексеевич
RU2662512C2
НЕСТАБИЛИЗИРОВАННАЯ АУСТЕНИТНАЯ СТАЛЬ, УСТОЙЧИВАЯ К ЛОКАЛЬНОЙ КОРРОЗИИ В СКД-ВОДЕ 2022
  • Писаревский Лев Александрович
RU2790717C1
ВЫСОКОПРОЧНАЯ МАЛОМАГНИТНАЯ НЕСТАБИЛИЗИРОВАННАЯ СВАРИВАЕМАЯ СТАЛЬ, УСТОЙЧИВАЯ К ЛОКАЛЬНЫМ ВИДАМ КОРРОЗИИ В ЗОНАХ ТЕРМИЧЕСКОГО ВЛИЯНИЯ СВАРКИ И ДЛИТЕЛЬНОГО НАГРЕВА В ОБЛАСТИ ОПАСНЫХ ТЕМПЕРАТУР 2021
  • Писаревский Лев Александрович
RU2782832C1
АУСТЕНИТНО-ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2700440C1
АУСТЕНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2012
  • Карзов Георгий Павлович
  • Марков Вадим Георгиевич
  • Кудрявцев Алексей Сергеевич
  • Трапезников Юрий Михайлович
  • Байгузин Евгений Яковлевич
  • Артемьева Дарина Александровна
  • Охапкин Кирилл Алексеевич
RU2551340C2
ПЛАКИРОВАННАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ ПОВЫШЕННОЙ ПРОЧНОСТИ 2016
  • Моляров Валерий Георгиевич
  • Калашникова Анастасия Вячеславовна
  • Моляров Алексей Валерьевич
  • Бочаров Альберт Николаевич
  • Родионова Ирина Гавриловна
RU2632499C1
Хлоридно-коррозионная стойкая сталь 2023
  • Иванова Татьяна Николаевна
  • Карпов Дмитрий Владимирович
RU2807775C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2009
  • Коренякин Андрей Федорович
  • Григорьев Сергей Борисович
  • Коваленко Виталий Петрович
  • Кондратьев Евгений Николаевич
  • Шахпазов Евгений Христофорович
  • Новичкова Ольга Васильевна
  • Писаревский Лев Александрович
  • Арабей Андрей Борисович
  • Антонов Владимир Георгиевич
  • Лубенский Александр Петрович
  • Кабанов Илья Викторович
RU2409697C1
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2013
  • Скоробогатых Владимир Николаевич
  • Дегтярев Александр Федорович
  • Дуб Алексей Владимирович
RU2524465C1
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ 2013
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Дегтярев Александр Федорович
  • Орлов Александр Сергеевич
  • Ершов Николай Сергеевич
RU2515716C1

Реферат патента 2015 года ЖАРОПРОЧНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ

Изобретение относится к области металлургии, а именно к жаропрочным коррозионностойким сталям, используемым в атомной энергетике и машиностроении в установках, эксплуатирующихся длительное время при температурах 500-600°C. Сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,06-0,10, кремний 0,02-0,3, марганец 0,3-0,8, хром 11,5-13,0, никель 0,8-1,2, молибден от 0,8 до менее 1,0, ванадий 0,15-0,30, ниобий 0,05-0,15, азот от более 0,04 до 0,07, сера 0,001-0,010, фосфор 0,001-0,015, медь 0,01-0,10, кальций от более 0,005 до 0,015, церий от более 0,01 до 0,05, бор 0,001-0,005, алюминий 0,05-0,15, железо - остальное. Суммарное содержание углерода и азота не превышает 0,16%. Повышаются механические свойства, особенно длительная прочность, а также повышается стойкость против питтингообразования, что приводит к повышению эксплуатационных характеристик и ресурса энергетического оборудования. 3 табл.

Формула изобретения RU 2 543 583 C2

Жаропрочная коррозионностойкая сталь, содержащая углерод, марганец, кремний, хром, никель, молибден, ванадий, ниобий, азот, серу, фосфор, медь и железо, отличающаяся тем, что она дополнительно содержит кальций, церий, алюминий и бор при следующем содержании компонентов, мас.%:
углерод 0,06-0,10 кремний 0,02-0,3 марганец 0,3-0,8 хром 11,5-13 никель 0,8-1,2 молибден от 0,8 до менее 1,0 ванадий 0,15-0,30 ниобий 0,05-0,15 азот от более 0,04 до 0,07 сера 0,001-0,010 фосфор 0,001-0,015 медь 0,01-0,10 кальций от более 0,005 до 0,015 церий от более 0,01 до 0,05 алюминий 0,05-0,15 бор 0,001-0,005 железо остальное


при этом суммарное содержание углерода и азота (C+N) не превышает 0,16%.

Документы, цитированные в отчете о поиске Патент 2015 года RU2543583C2

Загрузочное устройство "ЕРКАН 1982
  • Ермаков Юрий Георгиевич
  • Канер Вадим Фроимович
SU1041261A1
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2011
  • Кайбышев Рустам Оскарович
  • Дудова Надежда Рузилевна
RU2447184C1
ЖАРОПРОЧНАЯ СТАЛЬ 2006
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Дуб Владимир Семенович
  • Рябов Александр Николаевич
  • Куликов Анатолий Павлович
  • Ломакин Петр Александрович
  • Рыбин Валерий Васильевич
  • Карзов Георгий Павлович
  • Филимонов Герман Николаевич
  • Теплухина Ирина Владимировна
  • Петреня Юрий Кириллович
  • Дурынин Виктор Алексеевич
  • Уточкин Юрий Иванович
  • Батов Юрий Матвеевич
  • Баландин Сергей Юрьевич
  • Чижик Татьяна Александровна
  • Лисянский Александр Степанович
  • Титова Татьяна Ивановна
  • Черняховский Сергей Александрович
  • Колпишон Эдуард Юльевич
RU2333287C2
Устройство для вырубки заготовок из плоского материала 1984
  • Кривовязюк Анатолий Сергеевич
SU1199374A1
Способ исследования виброизолятора 1987
  • Миронов Евгений Михайлович
  • Дашевский Михаил Аронович
SU1446512A1
Система жидкостного охлаждения двигателя внутреннего сгорания 1985
  • Мартынюк Николай Павлович
  • Мартынюк Людмила Федоровна
SU1288316A1

RU 2 543 583 C2

Авторы

Орыщенко Алексей Сергеевич

Карзов Георгий Павлович

Кудрявцев Алексей Сергеевич

Марков Вадим Георгиевич

Трапезников Юрий Михайлович

Артемьева Дарина Александровна

Охапкин Кирилл Алексеевич

Даты

2015-03-10Публикация

2013-06-17Подача