СПОСОБ КОМПЬЮТЕРНОГО ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКОГО ЦИКЛА ПРОИЗВОДСТВА МЕТАЛЛОПРОДУКЦИИ Российский патент 2015 года по МПК G05B19/4097 G06F17/50 B22D11/16 

Описание патента на изобретение RU2552167C2

Изобретение относится к компьютерному проектированию технологического процесса производства металлоизделий, состоящего из последовательности процессов: получения заготовки литьем, обработки давлением и термообработки литой заготовки.

Известен способ компьютерного проектирования технологического цикла производства металлопродукции, состоящего из последовательности операций получения литой заготовки, обработки давлением и термообработки литого изделия, включающий определение плотности, теплоемкости и теплопроводности материала металлоизделия, определяемых с помощью испытаний стандартных образцов на калориметре, термическом анализаторе и дилатометре, определение сопротивления деформации материала металлоизделия путем испытаний стандартных образцов на растяжение и сжатие, компьютерного проектирования процесса получения литого изделия с помощью вычислительной среды конечно-элементного анализа THERCAST (http://wvm.transvalor.com/en/cmspages/thercast.6.html), проводимого на основе данных проведенных испытаний для определения значений плотности, теплоемкости, теплопроводности, сопротивления деформации, проектирование процессов обработки давлением и термообработки литого изделия с помощью вычислительной среды конечно-элементного анализа FORGE NXT (http://www.transvalor.com/en/cmspages/forge-nxt.32.html) на основе данных проведенных испытаний для определения плотности, теплоемкости, теплопроводности и сопротивления деформации.

Данный способ не позволяет применять для компьютерного проектирования процессов получения литого изделия никакие другие вычислительные среды конечно-элементного анализа, кроме THERCAST. Данный способ не позволяет применять для проектирования процессов обработки давлением и термообработки литых изделий никаких иных вычислительных сред конечно-элементного анализа, кроме FORGE NXT. Поэтому при данном способе компьютерного проектирования из-за отсутствия возможности комбинирования различных вычислительных сред конечно-элементного анализа при моделировании процессов получения литой заготовки, обработки давлением и термообработки литых изделий снижается эффективность компьютерного проектирования.

Технический результат изобретения - повысить вариативность комбинирования вычислительных сред конечно-элементного анализа при компьютерном проектировании технологических циклов производства металлопродукции, а также проведение сравнительного анализа результатов компьютерного проектирования технологических циклов производства металлопродукции, полученных при использовании сочетаний различных вычислительных сред конечно-элементного анализа предназначенных для компьютерного проектирования процессов литья, обработки давлением и термообработки литых изделий. При этом по результатам сравнительного анализа появляется возможность разработки рекомендаций по повышению эффективности проектируемого технологического цикла производства металлопродукции. Например, проведя моделирование процесса обработки давлением непрерывнолитой заготовки с помощью THERCAST и FORGE NXT, а затем проведя моделирование этого же процесса обработки давлением с помощью ProCAST и DEFORM-3D или, например, QForm и ProCAST, получают компьютерные модели одного и того же процесса, но созданные с применением различных вычислительных сред конечно-элементного анализа. При этом эти модели можно сравнивать, в том числе по тому, как обработка металлов давлением повлияла, например, на изменение плотности деформируемой непрерывнолитой заготовки. Наличие двух или более компьютерных моделей исследуемого процесса поможет инженеру повысить эффективность разрабатываемых рекомендаций, оптимизировать процесс, имея в распоряжении более широкий спектр данных.

Указанный технический результат достигается тем, что данные, полученные по результатам компьютерного проектирования процессов литья в вычислительной среде конечно-элементного анализа, предназначенной для компьютерного проектирования процессов литья, вне зависимости от ее версии и разработчика передаются в качестве входных данных в вычислительную среду конечно-элементного анализа для проектирования процессов обработки давлением и термообработки литых изделий вне зависимости от ее разработчика и версии.

Технический результат достигается на примере проектирования процесса получения слитка и последующей прошивки слитка на прессе с использованием вычислительных сред конечно-элементного анализа ProCAST (http://www.esi-group.com/products/casting/casting-simulation-suite) и DEF0RM-3D (www.deform.com). Вначале проводят испытания стандартных образцов материала слитка и определяют плотность, теплоемкость, теплопроводность и сопротивление деформации. Затем данные об этих свойствах вводят в препроцессор ProCAST и проектируют процесс получения слитка. По завершении проектирования в вычислительной среде конечно-элементного анализа ProCAST данные об узлах сетки конечных элементов сохраняют в файл с расширением «.node», данные об элементах сетки конечных элементов сохраняют в файл с расширением «.elem», данные о температуре слитка - в файл с расширением «.ntl», данные о пористости - в еще один файл с расширением «.ntl». После этого в препроцессоре DEFORM-3D создают пустой файл mesh.key. После этого на экран монитора выводят файл с расширением «.node» с данными об узлах сетки конечных элементов, созданный по результатам проектирования в ProCAST. Одновременно с этим на экран монитор выводят требования к входным данным об узлах сетки конечных элементов, импортируемым в DEFORM-3D. Из файла с данными об узлах сетки конечных элементов выделяют данные, соответствующие требования к данным об узлах сетки конечных элементов, импортируемым в DEFORM-3D, затем копируют эти соответствующие данные и вставляют их в файл mesh.key (фиг. 1).

Аналогично выбирают данные, соответствующие требованиям к импортируемым в DEFORM-3D данным из файлов с данными об элементах сетки конечных элементов (с расширением «.elem»), с данными о температуре слитка (с расширением «.ntl»), с данными о пористости (с расширением «.ntl») и вставляют их в файл mesh.key. Затем файл mesh.key открывают в препроцессоре DEFORM-3D, получают модель слитка с сеткой конечных элементов (фиг. 2), идентичной сетке, полученной при проектировании в ProCAST. После этого в DEFORM-3D у слитка отрезают прибыльную часть с усадочной раковиной так, как это делают перед обработкой давлением (фиг. 3-4). Далее вводят данные в препроцессор DEFORM-3D, полученные по результатам стандартных испытаний по определению плотности, теплоемкости, теплопроводности и сопротивления деформации материала слитка, затем в DEFORM-3D проектируют процесс прошивки на прессе (фиг. 5).

Похожие патенты RU2552167C2

название год авторы номер документа
Способ прогнозирования разрушения заготовок в процессе обработки металлов давлением 2020
  • Юсупов Владимир Сабитович
  • Андреев Владимир Александрович
  • Романцев Борис Алексеевич
  • Скрипаленко Михаил Михайлович
  • Карелин Роман Дмитриевич
  • Лайшева Надежда Владимировна
  • Галкин Сергей Павлович
  • Гамин Юрий Владимирович
  • Скрипаленко Михаил Николаевич
  • Кадач Максим Васильевич
RU2748138C1
СПОСОБ ПРОДОЛЬНОЙ ПРОКАТКИ ПОЛОСЫ НА ГЛАДКОЙ БОЧКЕ 2023
  • Кожевников Александр Вячеславович
  • Кожевникова Ирина Александровна
  • Скрипаленко Михаил Михайлович
  • Скрипаленко Михаил Николаевич
  • Гончарук Александр Васильевич
  • Романцев Борис Алексеевич
  • Сидоров Александр Александрович
  • Семенов Александр Александрович
  • Савонькин Михаил Борисович
  • Сидорова Татьяна Юрьевна
RU2814505C1
Способ определения длины дуги контакта при продольной прокатке полосы на гладкой бочке 2023
  • Кожевников Александр Вячеславович
  • Кожевникова Ирина Александровна
  • Скрипаленко Михаил Михайлович
  • Скрипаленко Михаил Николаевич
  • Гончарук Александр Васильевич
  • Романцев Борис Алексеевич
  • Сидоров Александр Александрович
  • Семенов Александр Александрович
  • Шалаевский Дмитрий Леонидович
RU2818241C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПОРИСТОСТИ МЕТАЛЛОИЗДЕЛИЙ 2015
  • Скрипаленко Михаил Михайлович
  • Скрипаленко Михаил Николаевич
RU2593525C1
Способ определения положения нейтрального сечения при продольной прокатке на гладкой бочке 2023
  • Кожевников Александр Вячеславович
  • Скрипаленко Михаил Михайлович
  • Скрипаленко Михаил Николаевич
  • Гончарук Александр Васильевич
  • Романцев Борис Алексеевич
  • Сидорова Татьяна Юрьевна
RU2826294C1
Способ оценки длины волокна заготовки при плоском деформированном состоянии 2022
  • Юсупов Владимир Сабитович
  • Скрипаленко Михаил Михайлович
  • Романцев Борис Алексеевич
  • Андреев Владимир Александрович
  • Скрипаленко Михаил Николаевич
  • Жигулев Геннадий Петрович
  • Фадеев Виктор Александрович
  • Гартвиг Артур Александрович
  • Гладков Юрий Анатольевич
  • Карелин Роман Дмитриевич
RU2794566C1
Способ определения площади контакта валка и заготовки при прокатке на гладкой бочке 2021
  • Юсупов Владимир Сабитович
  • Скрипаленко Михаил Михайлович
  • Романцев Борис Алексеевич
  • Андреев Владимир Александрович
  • Скрипаленко Михаил Николаевич
  • Гартвиг Артур Александрович
  • Гладков Юрий Анатольевич
  • Данилин Андрей Владимирович
  • Карелин Роман Дмитриевич
RU2787921C1
Способ прошивки в стане винтовой прокатки 2016
  • Романцев Борис Алексеевич
  • Скрипаленко Михаил Михайлович
  • Чан Ба Хюи
RU2635685C1
Способ определения площади контакта оправки и заготовки при винтовой прошивке 2019
  • Комлев Владимир Сергеевич
  • Юсупов Владимир Сабитович
  • Андреев Владимир Александрович
  • Романцев Борис Алексеевич
  • Скрипаленко Михаил Михайлович
  • Скрипаленко Михаил Николаевич
  • Цюцюра Владимир Юрьевич
  • Сидорова Татьяна Юрьевна
  • Карелин Роман Дмитриевич
RU2714225C1
СПОСОБ ПОЛУЧЕНИЯ СЛИТКА ИЗ ДИСПЕРСИОННО-ТВЕРДЕЮЩЕГО НИЗКОЛЕГИРОВАННОГО СПЛАВА НА МЕДНОЙ ОСНОВЕ И СПОСОБ ПРОИЗВОДСТВА ИЗ НЕГО МЕТАЛЛОПРОДУКЦИИ 2007
  • Костин Сергей Алексеевич
  • Николаев Александр Константинович
RU2378403C2

Иллюстрации к изобретению RU 2 552 167 C2

Реферат патента 2015 года СПОСОБ КОМПЬЮТЕРНОГО ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКОГО ЦИКЛА ПРОИЗВОДСТВА МЕТАЛЛОПРОДУКЦИИ

Изобретение относится к компьютерному проектированию технологического процесса производства металлоизделий, состоящего из последовательности процессов: получения заготовки литьем, обработки давлением и термообработки литой заготовки. Технический результат - повышение вариативности комбинирования вычислительных сред конечно-элементного анализа при компьютерном проектировании технологических циклов производства металлопродукции. В начале проводят испытания стандартных образцов материала металлоизделия для определения значений теплопроводности, теплоемкости, плотности и сопротивления деформации. Файлы базы данных, полученной по результатам компьютерного проектирования процесса получения литой заготовки, выводят на экран монитора, одновременно туда же выводят требования к данным, импортируемым в вычислительную среду конечно-элементного анализа для компьютерного проектирования процессов обработки давлением и термообработки. Из файлов базы данных выделяют данные, соответствующие требованиям, и копируют их. Затем создают пустой файл, вставляют в его скопированные данные, сохраняют полученный файл, открывают сохраненный файл в среде компьютерного проектирования процессов обработки давлением и термообработки и, используя эти данные, начинают компьютерное проектирование процессов обработки давлением и термообработки литой заготовки. 5 ил.

Формула изобретения RU 2 552 167 C2

Способ компьютерного проектирования технологического цикла производства металлопродукции, позволяющий повысить вариативность комбинирования вычислительных сред конечно-элементного анализа при компьютерном проектировании технологических циклов производства металлопродукции, а также проводить сравнительный анализ результатов компьютерного проектирования технологических циклов производства металлопродукции, полученных при использовании сочетаний различных вычислительных сред конечно-элементного анализа, предназначенных для компьютерного проектирования процессов литья, обработки давлением и термообработки литых изделий, состоящий из последовательности операций литья, обработки давлением и термообработки, включающий определение плотности, теплоемкости и теплопроводности материала металлоизделия, определяемых с помощью испытаний стандартных образцов на калориметре, термическом анализаторе и дилатометре, определение сопротивления деформации материла металлоизделия путем испытаний стандартных образцов на растяжение и сжатие на испытательной машине, компьютерном проектировании с помощью среды конечно-элементного анализа для проектирования процессов литья процесса получения литого изделия на основе данных проведенных испытаний для определения значений указанных свойств, проектировании процессов обработки давлением и термообработки с помощью вычислительной среды конечно-элементного анализа для проектирования процессов обработки давлением и термообработки, отличающийся тем, что файлы базы данных, полученной по результатам компьютерного проектирования процессов литья, выводят на экран монитора, одновременно с этим на экран монитора выводят требования к данным, импортируемым в среду компьютерного проектирования процессов обработки давлением и термообработки, из файлов базы данных, полученной по результатам компьютерного проектирования операций литья, выделяют данные, подходящие под требования к импортируемым в среду компьютерного проектирования процессов обработки давлением и термообработки данным, и копируют их, затем создают пустой файл, вставляют в пустой файл предварительно скопированные данные, сохраняют полученный файл, открывают сохраненный файл в среде компьютерного проектирования процессов обработки давлением и термообработки и, используя эти данные, начинают компьютерное проектирование процессов обработки давлением и термообработки.

Документы, цитированные в отчете о поиске Патент 2015 года RU2552167C2

СИСТЕМА АНАЛИЗА ПРОЕКТИРОВАНИЯ И ПРОЦЕССОВ ПРОИЗВОДСТВА 2003
  • Тушински Стив В.
RU2321886C2
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
Чугун для металлических форм 1990
  • Ковалевский Георгий Федорович
  • Карпенко Михаил Иванович
  • Марукович Евгений Игнатьевич
  • Бадюкова Светлана Михайловна
  • Науменко Василий Иванович
SU1724716A1
US 8437991 B2, 07.05.2013

RU 2 552 167 C2

Авторы

Скрипаленко Михаил Михайлович

Скрипаленко Михаил Николаевич

Баженов Вячеслав Евгеньевич

Сидоров Александр Александрович

Даты

2015-06-10Публикация

2013-09-26Подача