Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул аспирина в каррагинане.
Ранее были известны способы получения микрокапсул.
В пат. РФ 2173140, МПК A61K 009/50, A61K 009/127, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения
В пат. РФ 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. РФ 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом соотношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул, отличающимся тем, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра - аспирин при получении инкапсулируемых частиц методом осаждения нерастворителем с применением четыреххлористого углерода в качестве осадителя, процесс получения нанокапсул осуществляется без специального оборудования.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием четыреххлористого углерода в качестве осадителя, а также использование каррагинана в качестве оболочки частиц и аспирин - в качестве ядра.
Результатом предлагаемого метода является получение нанокапсул аспирина.
ПРИМЕР 1. Получение нанокапсул аспирина в каррагинане, соотношение оболочка: ядро 1:5
Суспензию 5 г аспирина растворяют в 5 мл бензола и диспергируют полученную смесь в суспензию каррагинана в бутаноле, содержащую 1 г указанного полимера, в присутствии 0,01 г препарата E472c (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1000 об/сек. Далее приливают 5 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул аспирина в каррагинане, соотношение оболочка: ядро 3:1
Суспензию 1 г аспирина растворяют в 5 мл бензола и диспергируют полученную смесь в суспензию каррагинана в бутаноле, содержащую 3 г указанного полимера, в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 3 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул аспирина в каррагинане, соотношение оболочка: ядро 1:1
Суспензию 1 г аспирина растворяют в 2 мл бензола и диспергируют полученную смесь в суспензию каррагинана в бутаноле, содержащую 1 г указанного полимера, в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 2 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4. Определение размеров нанокапсул методом NTA
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.
Оптимальным соотношением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. Длительность единичного измерения 215s, использование шприцевого насоса.
В таблице приведены статистические характеристики распределений.
На рис. 1 показано распределение частиц по размерам в образце нанокапсул аспирина в каррагинане.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АСПИРИНА В АЛЬГИНАТЕ НАТРИЯ | 2014 |
|
RU2557941C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АСПИРИНА В АЛЬГИНАТЕ НАТРИЯ | 2014 |
|
RU2565396C1 |
СПОСОБ ИНКАПСУЛЯЦИИ АСПИРИНА В КСАНТАНОВОЙ КАМЕДИ | 2014 |
|
RU2561686C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ РУЗОВОСТАТИНА В АЛЬГИНАТЕ НАТРИЯ | 2014 |
|
RU2566712C1 |
СПОСОБ ПОЛУЧЕНИЯ СМЕСИ ВЕТОМА 1.1 И СЕЛ-ПЛЕКСА, ОБЛАДАЮЩИХ СУПРАМОЛЕКУЛЯРНЫМИ СВОЙСТВАМИ | 2013 |
|
RU2550208C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ L-АРГИНИНА В АЛЬГИНАТЕ НАТРИЯ | 2014 |
|
RU2556202C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ РЕЗВЕРАТРОЛА В ПЕКТИНЕ | 2014 |
|
RU2558079C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ФЕНБЕНДАЗОЛА | 2014 |
|
RU2550923C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ L-АРГИНИНА В ПЕКТИНЕ | 2014 |
|
RU2557903C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛОЗАРТАНА КАЛИЯ | 2014 |
|
RU2554759C1 |
Изобретение относится в области нанотехнологии, в частности к способу получения нанокапсул аспирина в оболочке из каррагинана. Согласно способу по изобретению получают суспензию аспирина в бензоле. Диспергируют полученную смесь в суспензию каррагинана в бутаноле в присутствии препарата Е472с при перемешивании 1000 об/сек. Затем приливают четыреххлористый углерод, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре. Способ по изобретению обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 1 ил., 4 пр.
Способ получения нанокапсул аспирина в оболочке из каррагинана, характеризующийся тем, что получают суспензию аспирина в бензоле, диспергируют полученную смесь в суспензию каррагинана в бутаноле в присутствии препарата Е472с при перемешивании 1000 об/сек, затем приливают четыреххлористый углерод, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре.
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ | 1997 |
|
RU2134967C1 |
СОЛОДОВНИК В.Д | |||
"Микрокапсулирование", 1980, Москва, "Химия", стр.136-139 | |||
Способ получения микрокапсул | 1978 |
|
SU676316A1 |
Способ получения микрокапсул | 1976 |
|
SU707510A3 |
МИКРОКАПСУЛА ДЛЯ ДЛИТЕЛЬНОГО ВЫСВОБОЖДЕНИЯ ФИЗИОЛОГИЧЕСКИ АКТИВНОГО ПЕПТИДА | 1993 |
|
RU2098121C1 |
Продолговатый поражающий элемент для снаряжения артиллерийских снарядов типа шрапнели | 1921 |
|
SU4785A1 |
УДЕРЖИВАЕМАЯ ВЫПУСКНАЯ КАПСУЛА (ВАРИАНТЫ), СПОСОБ ЕЕ СБОРКИ И УСТРОЙСТВО ДЛЯ ВВЕДЕНИЯ ЖВАЧНОМУ ЖИВОТНОМУ | 1992 |
|
RU2114577C1 |
WO 1987001587 A1, 26.03.1987 |
Авторы
Даты
2015-07-27—Публикация
2014-03-18—Подача