УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ И ПОЛОЖЕНИЯ ОТКЛОНИТЕЛЯ ПРИ БУРЕНИИ Российский патент 2002 года по МПК E21B47/22 

Описание патента на изобретение RU2184845C1

Предлагаемое изобретение относится к контролю за пространственным положением ствола скважины и положения отклонителя в процессе бурения нефтяных и газовых скважин.

Известны способ и устройство определения азимута и зенитного угла наклонной скважины измерением трех проекций векторов гравитационного и магнитного полей Земли на трехгранник ортогональных осей скважинного снаряда посредством трехосных акселерометров и магнитометров. Выходные сигналы с датчиков поступают в ЭВМ, а после обработки и вычисления выдаются в виде азимутальных и зенитных углов на дисплее ЭВМ. Патенты Великобритании 2205166, 1988 г.

Недостатком устройств, реализованных по этому способу, является зависимость результатов измерений от вибрационных и ударных перегрузок, сопровождающих процесс бурения. При этом ошибки акселерометров от вибраций достигают значительных величин и требуют остановки процесса бурения для измерений азимута, зенитного угла, угла положения отклонителя. Если азимутальный и зенитный углы наклонной скважины изменяются во времени медленно и могут быть измерены в момент прекращения процесса бурения, то положение отклонителя при бурении должно контролироваться непрерывно, т.к. реактивный момент от долота и упругий момент колонны труб стремится развернуть отклонитель от заданного направления. Неконтролируемое положение отклонителя приводит к изменению плановой траектории скважины.

Применимое в некоторых случаях определение положения отклонителя при бурении посредством феррозондов по магнитному полю Земли при известном азимутальном и зенитном углах, измеренных при остановках бурения, также имеет ограничение. Так при бурении наклонно-направленной скважины, совпадающей с вектором напряженности магнитного поля Земли (МПЗ), положение отклонителя по МПЗ не может быть определено. Особенно это существенно при бурении в высоких широтах, где вектор напряженности МПЗ близок к вертикали. Именно в этих областях в настоящее время бурится наибольшее количество скважин.

Известно устройство для контроля комплекса параметров траектории скважин и угла установки отклонителя, содержащее генератор возбуждения, датчик азимута, выполненный в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, датчик зенитного угла и угла установки отклонителя, выполненный в виде двух синусно-косинусных вращающихся трансформаторов, установленных в рамках-маятниках, два коммутатора, блок управления, аналого-цифровой преобразователь. Авт. свид. СССР 1078041, Е 21 В 47/02, Б. И. 9, 1984.

Недостатком известного устройства является невысокая точность определения азимута (до±2% в диапазоне 0÷360o). Из-за сил сухого трения в опорах подвеса маятников и нелинейности статических характеристик электрических датчиков их углов поворота, а также зависимости результатов измерений от температуры, достигающих значительной величины на больших глубинах.

Наиболее близким техническим решением к заявляемому изобретению является устройство для определения углов искривления скважины, содержащее блок возбуждения, датчики азимута с тремя ортогональными феррозондами, неподвижно закрепленными относительно корпуса устройства, датчик угла отклонения, два коммутатора, блок управления, аналого-цифровой преобразователь. Устройство имеет реверсивный счетчик, блок памяти, что позволяет уменьшить ошибки, возникающие вследствие влияния температуры. Авт. свид. СССР 1139835, Е 21 В 47/02, Б.И. 6, 1985.

Недостатками известного устройства являются невысокая точность определения азимута и зенитного углов особенно при малых зенитных углах от влияния сил сухого трения в опорах датчиков угла отклонения, а также сложность схемных решений при компенсации влияния температуры.

Изобретение решает техническую задачу повышения точности определения углов в процессе бурения.

Поставленная цель достигается тем, что устройство для определения углов искривления скважины и положения отклонителя при бурении, содержащее наземный блок, соединенный со скважинным снарядом, включающим генератор возбуждения, подключенный к одному из входов первого коммутатора, ко второму входу которого и к первому входу второго коммутатора подключены выходы блока управления, а выходы первого коммутатора соединены со входами датчика азимута, выполненного в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, и датчика угла установки отклонителя, выполненного в виде синусно-косинусного вращающегося трансформатора, установленного в поплавковом маятнике, выходы которых через детекторы подключены ко второму и третьему входам второго коммутатора, соединенного выходом со входом аналого-цифрового преобразователя, отличающееся тем, что скважинный снаряд снабжен тремя акселерометрами, оси чувствительности которых взаимно ортогональны и соосны осям чувствительности феррозондов, низкочастотными фильтрами, датчиком температуры, последовательным адаптером и блоком связи, а наземный блок снабжен узлом дешифрации и связи и персональной ЭВМ, соединенной узлом дешифрации и связи, который через блок связи соединен с входом блока управления скважинного снаряда и с выходом последовательного адаптера, вход которого соединен с выходом аналого-цифрового преобразователя, при этом выходы акселерометров через соответствующие низкочастотные фильтры и выход датчика температуры подключены соответственно к четвертому, пятому, шестому и седьмому входам второго коммутатора.

На чертеже представлена блок-схема устройства.

Устройство содержит скважинный снаряд, 1, включающий датчик азимута 2 на трех взаимно ортогональных феррозондах 3, 4, 5, датчик угла установки отклонителя 6, выполненного в виде синусно-косинусного вращающегося трансформатора (СКВТ), установленного в поплавковом маятнике, 7 - статорные обмотки СКВТ, 8 - роторная обмотка СКВТ, трехосного акселерометра 9, состоящего, например, из трех линейных акселерометров 10, 11, 12, датчик температуры 13. Оси чувствительности феррозондов и акселерометров ортогональны и образуют трехгранник координатных осей, неподвижно связанных со скважинным снарядом. При этом оси чувствительности феррозондов соосны осям чувствительности соответствующих акселерометров. Электрический нуль датчика угла установки отклонителя совмещен с нулем положения отклонителя, вычисленного по показаниям акселерометров. Кроме того, в скважинном снаряде размещены генератор возбуждения 14, первый 15 и второй 16 детекторы, первый 17 и второй 18 коммутаторы, низкочастотные фильтры 19, 20, 21 акселерометров, блок управления коммутатором 22, аналого-цифровой преобразователь (АЦП) 23, последовательный адаптер 24, блок связи с наземным устройством 25. Наземный блок 26 содержит источники питания скважинного снаряда, узел дешифрации сигналов и связи 27 с персональной ЭВМ 28.

Устройство работает следующим образом.

Для измерения азимута, зенитного угла, угла установки отклонителя и температуры с наземного блока 26 на блок управления 22 и коммутаторы 17, 18 поступает запускающий импульс. Генератор 14 формирует сигнал возбуждения, который через коммутатор 17 подается попеременно на обмотки возбуждения феррозондов 3, 4, 5 и статорные обмотки 7 СКВТ. При наличии магнитного поля Земли (МПЗ) в сигнальных обмотках феррозондов появляется выходное напряжение, пропорциональное проекции вектора напряженности МПЗ на оси чувствительности феррозондов. Напряжения с сигнальных обмоток феррозондов поочередно подаются на фазочувствительный детектор 15 и через второй коммутатор 18 на аналого-цифровой преобразователь 23. Напряжение с генератора 14 подается и на статорные обмотки 7 СКВТ, при этом напряжение с роторной обмотки 8, функционально связанное с углом поворота маятника, датчика 6, после детектирования в блоке 16 также через коммутатор 18 поступает на вход аналого-цифрового преобразователя 23. На вход коммутатора 18 по сигналам с блока управления 22 последовательно поступают сигналы с акселерометров 10, 11, 12 через низкочастотные фильтры 19, 20, 21 и датчик температуры 13 скважинного снаряда.

Число-импульсный код, соответствующий сигналу с каждого первичного датчика, с выхода аналого-цифрового преобразователя 23 поступает на вход последовательного адаптера 24, преобразующего параллельный код в последовательный формат, и через блок связи 25 с наземным устройством поступает в оперативную память персональной ЭВМ 28. После окончания полного цикла измерения и записи в памяти ЭВМ измерения накапливаются, осредняются и после алгоритмической обработки и вычислений высвечиваются на дисплее ЭВМ в виде цифровой, графической и текстовой информации.

Для точных измерений азимута, зенитного угла, угла установки отклонителя используются сигналы с феррозондов и акселерометров при кратковременных остановках процесса бурения, вычисляемые по формулам, приведенным в монографии: Ковшов Г.Н., Алимбеков Р.И., Жибер А.В. Инклинометры (основы теории и проектирования), Уфа, Гилем, 1998, 380 с.:

Здесь обозначено α, θ, ϕ - соответственно, азимут, зенитный угол и угол установки отклонителя, ai, bi (i=1,2,3) - приведенные безразмерные сигналы с феррозондов и акселерометров, В - магнитное наклонение.

Положение отклонителя на вертикальном участке в процессе бурения, вычисленное по магнитному полю Земли, определяется по формуле

Положение отклонителя в процессе бурения вычисляется по сигналам с маятникового датчика угла установки отклонителя:

где b1*, b2* - приведенные безразмерные сигналы с роторной обмотки СКВТ при последовательном подключении статорных обмоток СКВТ.

Несмотря на специальные схемные решения, применяемые при разработке первичных датчиков (феррозондов, акселерометров, СКВТ), температурный дрейф последних оказывается значительным. Это приводит к недопустимым погрешностям измерения азимута и зенитного углов при изменении окружающей температуры до +120oС, в котором должно работать устройство. Измерение температуры специальным датчиком, расположенным в скважинном снаряде, позволяет применить алгоритмические методы компенсации с помощью ЭВМ, если закон изменения температурного дрейфа первичных датчиков определен по предварительным температурным испытаниям устройства. Это повышает точность измерения углов в широком диапазоне температур, а также упрощает конструкцию скважинного снаряда, исключающего реверсивный счетчик и блок памяти.

Предлагается следующая последовательность использования устройства при бурении наклонно-направленных скважин. Вначале, на вертикальном участке положение отклонителя определяется посредством феррозондов по магнитному полю Земли с использованием формулы (4). Феррозонды, неподвижно закрепленные в скважинном снаряде, не реагируют на вибрационные и ударные перегрузки, сопровождающие процесс бурения, поэтому установка отклонителя проводится непосредственно при бурении. При наборе кривизны θ≥5÷10°, положение отклонителя в процессе бурения определяется уже с использованием поплавкового маятникового датчика угла установки отклонителя, вычисленное по формулам (5). Осевые вибрационные и ударные перегрузки, направленные по оси вращения маятника, на показаниях его не сказываются.

Таким образом, предложенное устройство позволяет осуществить ориентирование отклонителя в вертикальных и наклонных стволах скважин в процессе бурения и в высоких широтах, увеличить проходку на долото и упростить процесс ориентирования. При кратковременном прекращении процесса бурения азимут и зенитный углы скважины определяются уже с большой точностью по сигналам феррозондов и акселерометров, вычисленные по формулам (1), (2), и не требуют контроля положения скважины геофизическими инклинометрами.

Таким образом, предлагаемое устройство обеспечивает повышение производительности труда при бурении наклонно-направленных скважин за счет повышения точности и надежности результатов измерений.

Стендовые и полевые испытания устройства показали, что основная погрешность измерения азимута наклонной скважины лежит в пределах ±2o, зенитного угла ±0,2o, угла установки отклонителя ±0,2o.

Предлагаемое изобретение может быть использовано для бурения нефтяных и газовых наклонно-направленных и горизонтальных скважин, а также для прокладки пилот-скважин, бурящихся под реками для проводки газо- и нефтетрубопроводов.

Похожие патенты RU2184845C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ 2000
  • Ковшов Г.Н.
  • Коловертнов Г.Ю.
  • Коловертнов Ю.Д.
  • Федоров С.Н.
RU2166084C1
СПОСОБ ОПРЕДЕЛЕНИЯ АЗИМУТА, ЗЕНИТНОГО УГЛА И УГЛА МАГНИТНОГО НАКЛОНЕНИЯ 1997
  • Миловзоров Г.В.
RU2131029C1
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ 2012
  • Заико Александр Иванович
  • Иванова Галина Алексеевна
RU2503810C1
Устройство для контроля комплекса параметров траектории скважин и угла установки отклонителя бурового инструмента 1982
  • Ковшов Геннадий Николаевич
  • Миловзоров Георгий Владимирович
  • Ахметзянов Вакиль Закарович
  • Шулаков Алексей Сергеевич
SU1078041A1
СПОСОБ ОПРЕДЕЛЕНИЯ КОМПЛЕКСА УГЛОВЫХ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ БУРОВОГО ИНСТРУМЕНТА 2015
  • Миловзоров Дмитрий Георгиевич
  • Ясовеев Васих Хаматович
  • Морозова Елена Сергеевна
RU2610957C1
Устройство для определения углов искривления скважины 1982
  • Исаченко Валерий Харитонович
  • Ковшов Геннадий Николаевич
  • Лебедев Леонид Леонидович
  • Мелик-Шахназаров Александр Михайлович
  • Миловзоров Георгий Владимирович
  • Рыбаков Александр Николаевич
  • Сергеев Анатолий Николаевич
  • Фролов Валентин Григорьевич
  • Шумилов Леонид Петрович
SU1139835A1
Устройство для контроля зенитных углов и положения отклонителя в скважине 1983
  • Ковшов Геннадий Николаевич
  • Миловзоров Георгий Владимирович
  • Султанаев Рафаиль Аминович
SU1155733A1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗЕНИТНОГО И ВИЗИРНОГО УГЛОВ 1997
  • Миловзоров Г.В.
RU2121573C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗЕНИТНЫХ И ВИЗИРНЫХ УГЛОВ 1997
  • Миловзоров Г.В.
RU2121574C1
Устройство для контроля комплекса параметров искривления скважин 1984
  • Ковшов Геннадий Николаевич
  • Миловзоров Георгий Владимирович
  • Султанаев Рафаиль Аминович
  • Андрианов Владимир Александрович
SU1208208A1

Реферат патента 2002 года УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ И ПОЛОЖЕНИЯ ОТКЛОНИТЕЛЯ ПРИ БУРЕНИИ

Изобретение относится к промысловой геофизике и может быть использовано при разработке инклинометрических устройств для измерения в процессе бурения азимута, зенитного угла скважины, а также измерения угла, установки отклонителя при ориентировании инструмента в скважине. Изобретение решает задачу повышения точности определения углов ориентации в процессе бурения в широком диапазоне температур и расширения области применения устройства при бурении в высоких широтах. Поставленная задача достигается тем, что устройство содержит генератор возбуждения, датчик азимута, выполненный в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, датчик угла установки отклонителя, выполненный в виде синусно-косинусного вращающегося трансформатора, установленного в поплавковом маятнике, два коммутатора, блок управления, аналого-цифровой преобразователь. Дополнительно устройство снабжено тремя акселерометрами, оси чувствительности которых взаимно ортогональны и соосны осям чувствительности феррозондов, низкочастотными фильтрами, датчиком температуры, последовательным адаптером. При этом выходы акселерометров через низкочастотные фильтры и датчик температуры соединены с дополнительными входами коммутатора. К выходу аналого-цифрового преобразователя подключен вход последовательного адаптера, выход которого через блок связи с наземным устройством и блок дешифрации подключен к персональной ЭВМ. 1 ил.

Формула изобретения RU 2 184 845 C1

Устройство для определения углов искривления скважины и положения отклонителя при бурении, содержащее наземный блок, соединенный со скважинным снарядом, включающим генератор возбуждения, подключенный к одному из входов первого коммутатора, ко второму входу которого и к первому входу второго коммутатора подключены выходы блока управления, а выходы первого коммутатора соединены со входами датчика азимута, выполненного в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, и датчика угла установки отклонителя, выполненного в виде синусно-косинусного вращающегося трансформатора, установленного в поплавковом маятнике, выходы которых через детекторы подключены ко второму и третьему входам второго коммутатора, соединенного выходом со входом аналого-цифрового преобразователя, отличающееся тем, что скважинный снаряд снабжен тремя акселерометрами, оси чувствительности которых взаимно ортогональны и соосны осям чувствительности феррозондов, низкочастотными фильтрами, датчиком температуры, последовательным адаптером и блоком связи, а наземный блок снабжен узлом дешифрации и связи и персональной ЭВМ, соединенной с узлом дешифрации и связи, который через блок связи соединен с входом блока управления скважинного снаряда и с выходом последовательного адаптера, вход которого соединен с выходом аналого-цифрового преобразователя, при этом выходы акселерометров через соответствующие низкочастотные фильтры и выход датчика температуры подключены соответственно к четвертому, пятому, шестому и седьмому входам второго коммутатора.

Документы, цитированные в отчете о поиске Патент 2002 года RU2184845C1

Устройство для определения углов искривления скважины 1982
  • Исаченко Валерий Харитонович
  • Ковшов Геннадий Николаевич
  • Лебедев Леонид Леонидович
  • Мелик-Шахназаров Александр Михайлович
  • Миловзоров Георгий Владимирович
  • Рыбаков Александр Николаевич
  • Сергеев Анатолий Николаевич
  • Фролов Валентин Григорьевич
  • Шумилов Леонид Петрович
SU1139835A1
Устройство для контроля комплекса параметров траектории скважин и угла установки отклонителя бурового инструмента 1982
  • Ковшов Геннадий Николаевич
  • Миловзоров Георгий Владимирович
  • Ахметзянов Вакиль Закарович
  • Шулаков Алексей Сергеевич
SU1078041A1
Устройство для контроля зенитных углов и положения отклонителя в скважине 1983
  • Ковшов Геннадий Николаевич
  • Миловзоров Георгий Владимирович
  • Султанаев Рафаиль Аминович
SU1155733A1
Автономный инклинометр 1988
  • Миловзоров Георгий Владимирович
  • Ураксеев Марат Абдуллович
  • Штанько Олег Николаевич
  • Смирнов Юрий Михайлович
SU1615348A1
ГИРОИНКЛИНОМЕТР 1994
  • Белянин Лев Николаевич
  • Голиков Алексей Никандрович
  • Мартемьянов Владимир Михайлович
  • Самойлов Сергей Николаевич
RU2078204C1
БЕСКАРДАННЫЙ ГИРОСКОПИЧЕСКИЙ ИНКЛИНОМЕТР И СПОСОБ ВЫРАБОТКИ ИНКЛИНОМЕТРИЧЕСКИХ УГЛОВ 1994
  • Андрианов Ю.М.
  • Богомолов О.Д.
  • Вечтомов В.М.
  • Герасимов Н.В.
  • Люсин Ю.Б.
  • Пензин Л.И.
  • Пуляевский Г.Г.
  • Сабаев В.Ф.
  • Саенко В.А.
  • Чичинадзе М.В.
  • Шульман И.Ш.
RU2101487C1
ТЕЛЕМЕТРИЧЕСКАЯ СИСТЕМА КОНТРОЛЯ НАВИГАЦИОННЫХ ПАРАМЕТРОВ ТРАЕКТОРИИ СТВОЛА СКВАЖИНЫ 1997
  • Скобло Валерий Залманович[Ru]
  • Верлиев Тимур Музафарович[Az]
RU2110684C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ 2000
  • Ковшов Г.Н.
  • Коловертнов Г.Ю.
  • Коловертнов Ю.Д.
  • Федоров С.Н.
RU2166084C1
US 4844923 A, 23.01.1990
СПОСОБ ПОЛУЧЕНИЯ СОЛЕЙ ГУМИНОВЫХ КИСЛОТ 2001
  • Полоскин Р.Б.
  • Поляков Ю.Ю.
  • Гладков О.А.
  • Соколова И.В.
  • Сорокин Н.И.
  • Глебов А.В.
RU2205166C1
ПРОЗРАЧНАЯ И ГИБКАЯ КОМПОЗИЦИЯ ПРОПИЛЕНОВЫХ ПОЛИМЕРОВ И ИЗДЕЛИЕ, ПОЛУЧЕННОЕ ИЗ НЕЕ 2002
  • Пелликони Антео
  • Лонардо Анджело
  • Мей Габриеле
RU2296772C2
СПОСОБ ЛАЗЕРНОГО ОБЛУЧЕНИЯ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ПОЛОСТИ БИОТКАНИ 2011
  • Алипов Владимир Владимирович
  • Акчурин Гариф Газизович
  • Лебедев Максим Сергеевич
  • Лебедева Екатерина Александровна
  • Добрейкина Евгений Алексеевич
  • Акчурин Георгий Гарифович
  • Алипов Никита Владимирович
RU2492882C2
СПОСОБ ОЦЕНКИ ВЫНОСЛИВОСТИ СПОРТСМЕНА В ИГРОВЫХ ВИДАХ СПОРТА 2016
  • Афоньшин Владимир Евгеньевич
RU2615899C1
DE 3135743 А1, 19.05.1982
Бесколесный шариковый ход для железнодорожных вагонов 1917
  • Латышев И.И.
SU97A1
Машина для формования железобетонных тонкостенных пространственных криволинейных покрытий сводов двойной кривизны 1957
  • Бузницкий Е.В.
  • Дегтяр Э.М.
  • Фельдшон З.Д.
  • Цейтлин А.А.
SU109830A1

RU 2 184 845 C1

Авторы

Ковшов Г.Н.

Коловертнов Г.Ю.

Бондарь В.А.

Федоров С.Н.

Даты

2002-07-10Публикация

2001-04-06Подача