Способ определения токсичности химических веществ, генерирующих активные формы кислорода Российский патент 2017 года по МПК C12Q1/66 C12N1/21 C12N15/52 

Описание патента на изобретение RU2614267C1

Изобретение относится к определению токсичности химических веществ, способных за счет генерации активных форм кислорода оказывать негативное воздействие на клетки, приводящее к повреждению генетической информации, в результате которого микрофлора в организме человека (например, принимающего содержащие данные вещества лекарства), может в результате действия их подпороговых концентраций приобрести ряд мутаций, повышающих ее патогенность либо увеличивающих резистентность. Изобретение может быть использовано для оценки побочных эффектов лекарственных препаратов и других химических веществ.

Увеличение внутриклеточной концентрации активных форм кислорода (АФК) выше уровня антиоксидантной защиты вызывает «окислительный стресс», который сопровождается негативными для жизнедеятельности клеток процессами, такими как перекисное окисление липидов, окислительная модификация белков и нуклеиновых кислот (Zenkov N.K., Lankin V.Z., Menshchikova E.B. 2001. Oxidativestress: biochemical and pathophysiological aspects. Moscow: Int. Acad. Publ. Comp., Science, Interperiodica. 343 P.).

Окислительные повреждения ДНК связаны с такими процессами, как мутагенез, канцерогенез, старение и ряд связанных с ним болезней пожилого возраста. Значительная часть (60-80%) повреждений ДНК, вызванных радиацией, также формируется за счет АФК, образованных при радиолизе воды. Повреждения молекул ДНК являются одной из основных причин пострадиационной гибели животных (Гудков СВ., Брусков В.И. Гуанозин и инозин (рибоксин). Антиоксидантныеи радиозащитные свойства. Lambert Academic Pulishing. 2011).

Известны способы определения токсичности химических веществ, вызывающих усиление образования АФК, на основе биосенсоров (культур клеток бактерий, в которых присутствуют гены, обеспечивающие свечение бактериальной клетки), свечение которых усиливается или подавляется под действием определенных химических веществ (Development of human cell biosensor system for genotoxicity detection based on DNA damage-induced gene expression. Zager V, Cemazar M, Hreljac I, Lah TT, Sersa G, Filipic M. RadiolOncol. 2010 Mar; 44(1):42-51; патент RU №2179581, МПК C12Q 1/02, C12Q 1/66, 2002 г.; патент RU №2297450, МПК C12N 1/21, 2007 г.; патент RU №2355760, МПК C12N 1/21, 2009 г.; патент RU №2179581, МПК C12Q 1/02, 2002 г.).

Наиболее близким по выполнению является способ определения генотоксичности химических веществ, включающий инкубацию тестируемого химического вещества с рекомбинантным штаммом Е. coli, несущим плазмиду, в котором lux оперон находится под контролем SOS-lux-промотора, измерение интенсивности биолюминесценции контрольных культур и содержащих тестируемое химическое вещество и определение генотоксичности по фактору индукции I=Lc/Lk, где I - фактор индукции; Lc - интенсивность свечения суспензии SOS-lux штамма, содержащего тестируемое химическое вещество; Lк - интенсивность свечения контрольной суспензии SOS-lux штамма (Анализ SOS-ответа клеток E. coli с помощью бактериальной люминесценции. Всесоюз. конф. "Генетические исследования действия биологических, химических и физических факторов окружающей среды", по проблеме "Человек и Биосфера ", Киев, 1988, с. 95).

Недостатком данного способа является недостаточно высокий фактор индукции, (усиление биолюминесценции тестируемой токсичной пробы по сравнению с биолюминесценцией контрольной пробы), а также неспецифичность в отношении генотоксического действия активных форм кислорода, которое является наиболее опасным проявлением токсичности.

Техническим результатом изобретения является увеличение фактора индукции.

Технический результат достигается тем, что в культуру Escherichia coli К12 MG1655, содержащую плазмиду PkatG-lux, в которой lux оперон биолюминесценции морских фотобактерий Photobacterium leiognathi, Vibrio fischeri или Photorabdus luminescens поставлен под контроль промотора PkatG (выделенного из регулона, отвечающего за реакцию клетки на активные формы кислорода), добавляют рибофлавин до конечной концентрации 1⋅10-5 мг/мл - 1⋅10-3 мг/мл, добавляют анализируемое вещество в концентрации, не подавляющей жизнедеятельность Escherichia coli, определяют интенсивность люминесценции полученной суспензии и контроля, а о повреждающем действии исследуемого вещества судят по отклонению интенсивности люминесценции суспензии от контроля (повреждающее действие отсутствует, если нет отклонения от контроля).

Культуру предварительно выращивают предпочтительно на жидкой питательной полноценной среде Луриа-Бертани.

После выращивания плотность культуры доводят предпочтительно до 0,01-0,1 единицы Мак-Фарланда и концентрации 3⋅107-3⋅106 клеток/мл.

Контроль содержит в качестве вещества сравнения (контрольного вещества) предпочтительно деионизированную воду в эквивалентном объеме.

Отличием предлагаемого способа является добавление в культуру клеток Е. coli, несущей плазмиду PkatG-lux, в которой lux оперон поставлен под контроль промотора PkatG, рибофлавина в концентрации 1⋅10-5 мг/мл - 1⋅10-3 мг/мл.

Рибофлавин известен в качестве кофактора фермента люциферазы, монооксигеназы КФ 144413 (J.W. Hastings. 1983 "Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems." Journal of Molecular Evolution, v. 19: p. 309-321). Однако неизвестен характер влияния рибофлавина (усиление или ослабление люминесценции) и неизвестны пределы концентраций, способствующие увеличению фактора индукции в отношении бактерий Escherichia coli 12К MG1655, содержащей плазмиду PkatG-lux, с опероном Photobacterium leiognathi, Vibriofischeri или Photorabdusluminescens.

Ниже приведены примеры осуществления способа.

Пример 1

Определение токсичности перекиси водорода по способу прототипа

В качестве тестируемого вещества взята перекись водорода концентрацией 10-3 М. Культуру Е. coli выращивают на среде LBP (пептон - 10 г, дрожжевой экстракт - 5 г, хлористый натрий - 10 г на 1 л раствора; pH 7.0) в присутствии 50 мкг/мл ампициллина. В 50 мл среды вносят 0,1 мл ночной культуры Е. coli С 600 и инкубируют в термостате в течение одного часа при t=37°C. Затем добавляют среду LBP до достижения оптической плотности культуры 0,1 (550 нм). Аликвоты этой культуры по 1 мл переносят в стерильные пробирки и добавляют в них по 10 мкл тестируемого химического вещества. Содержимое пробирок тщательно перемешивают. Пробирки помещают на 1 час в термостат при t=37°C. В процессе инкубации пробирки несколько раз встряхивают.

По окончании инкубации культуры охлаждают до комнатной температуры. На люминометре LM-01T (Immunotech, Чехия), измеряют интенсивности биолюминесценции контрольных культур и содержащих анализируемое химическое вещество. Получают следующие данные. Интенсивность люминесценции для перекиси водорода составляет 14680,3 у.е., для контроля 1366,7 у.е. То есть фактор индукции равен 10,7.

Пример 2

В качестве тестируемого вещества взята перекись водорода.

Культуру клеток Е. coli К12 MG1655 с плазмидой PkatG-lux, в которой оперон биолюминесценции морских фотобактерий Photobacterium leiognathi поставлен под контроль промотора PkatG, растят на жидкой питательной полноценной среде Луриа-Бертани (Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. // -М.: Мир, 1984, 480 стр.) при постоянной аэрации на круговой качалке при 37°C. В среду добавляют антибиотик ампициллин (100 мкг/мл).

Ночную культуру разбавляют свежей средой до плотности 0,01 единица Мак-Фарланда (концентрация 3⋅107 клеток/мл), и добавляют рибофлавин до конечной концентрации 1⋅10-4 мг/мл. Аликвоты этой культуры (по 90 мкл) переносят в ячейки (стрипы) планшета и добавляют в них по 10 мкл перекиси водорода концентрацией 10-3 М. Указанная концентрация подобрана в соответствии с предварительно исследованной зависимостью доза-эффект, согласно которой данная концентрация является максимально эффективной. В контрольные ячейки добавляют 10 мкл деионизированной воды.

После обработки планшет с пробами помещают в люминометр, инкубируют при 30°C и измеряют интенсивность биолюминесценции (Люминесценцию измеряют на люминометре LM-01T (Immunotech, Чехия). Интенсивность люминесценции для пробы с перекисью водорода составляет 27296.3 у.е., а для контроля 1822,7 у.е. То есть фактор индукции как их соотношение равен 14,98. Интенсивность люминесценции пробы с перекисью водорода без добавления рибофлавина (положительный контроль) составляет 18114,1 у.е. То есть фактор индукции равен 9,94.

Аналогично ночную культуру разбавляют свежей средой до плотности 0,1 единица Мак-Фарланда (концентрация 3⋅106 клеток/мл).

Аналогично в качестве lux оперона используют оперон биолюминесценции морских фотобактерий Vibriofischeri и Photorabdusluminescens.

Результаты по показателям интенсивности свечения аналогичны.

На рис. 1 приведены значения фактора индукции анализируемого вещества - перекиси водорода концентрацией 10-3 М при различных концентрациях рибофлавина и без добавления рибофлавина к культуре. Как видно из рис. 1, при заявляемых концентрациях (1⋅10-5-1⋅10-3 мг/мл) фактор индукции превышает таковой без добавления рибофлавина. То есть добавление рибофлавина в концентрациях 1⋅10-5-1⋅10-3 мг/мл позволяет увеличить интенсивность свечения анализируемой пробы.

Таким образом, способ позволяет увеличить фактор индукции по сравнению со способом прототипа (для которого фактор индукции в соответствии с примером 1 составляет 10,7) и может быть использован для определения токсичности химических веществ, генерирующих активные формы кислорода (в частности, перекиси водорода).

Похожие патенты RU2614267C1

название год авторы номер документа
Способ определения генотоксичности химических веществ 2016
  • Чистяков Владимир Анатольевич
  • Празднова Евгения Валерьевна
  • Чмыхало Виктор Константинович
  • Брень Анжелика Борисовна
  • Белик Тимур Викторович
  • Мазанко Мария Сергеевна
RU2614122C1
НАБОР lux-БИОСЕНСОРОВ ДЛЯ ОПРЕДЕЛЕНИЯ ГЕНОТОКСИЧНЫХ ПРОДУКТОВ НЕПОЛНОГО ОКИСЛЕНИЯ НЕСИММЕТРИЧНОГО ДИМЕТИЛГИДРАЗИНА В СРЕДЕ 2014
  • Манухов Илья Владимирович
  • Горбунов Михаил Алексеевич
  • Дёгтев Дмитрий Ильич
  • Завильгельский Геннадий Борисович
  • Кессених Андрей Григорьевич
  • Коноплёва Мария Николаевна
  • Котова Вера Юрьевна
  • Краснопеева Екатерина Дмитриевна
  • Мотовилов Константин Александрович
  • Осетрова Мария Станиславовна
  • Чалкин Станислав Филиппович
RU2569156C1
Набор lux-биосенсоров для детекции токсичных продуктов неполного окисления несимметричного диметилгидразина в среде 2015
  • Кессених Андрей Григорьевич
  • Манухов Илья Владимирович
  • Вагапова Эльмира Рамилевна
  • Высоких Михаил Юрьевич
  • Коноплёва Мария Николаевна
  • Котова Вера Юрьевна
  • Горбунов Михаил Алексеевич
  • Чалкин Станислав Филиппович
  • Завильгельский Геннадий Борисович
RU2626569C2
НАБОР LUX-БИОСЕНСОРОВ ДЛЯ ОПРЕДЕЛЕНИЯ ГЕПТИЛА В СРЕДЕ 2005
  • Завильгельский Геннадий Борисович
  • Котова Вера Юрьевна
  • Манухов Илья Владимирович
  • Кондратьев Андрей Дмитриевич
  • Самброс Виталий Васильевич
  • Шатров Яков Тимофеевич
  • Чалкин Станислав Филиппович
RU2297450C2
НАБОР lux-БИОСЕНСОРОВ ДЛЯ ОПРЕДЕЛЕНИЯ ДЕТЕРГЕНТОВ ГИДРОФОБНОЙ ПРИРОДЫ В СРЕДЕ 2007
  • Завильгельский Геннадий Борисович
  • Котова Вера Юрьевна
  • Манухов Илья Владимирович
  • Мелькина Ольга Евгеньевна
RU2355760C1
Способ выявления из естественных сред перспективных пробиотических штаммов 2021
  • Брень Анжелика Борисовна
  • Мазанко Мария Сергеевна
  • Празднова Евгения Валерьевна
  • Ермаков Алексей Михайлович
  • Попов Игорь Витальевич
  • Чистяков Владимир Анатольевич
  • Чикиндас Михаил Леонидович
RU2772351C1
СПОСОБ БИОДЕТЕКЦИИ ПОЛИАРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ (ПАУ) 2000
  • Чистяков В.А.
  • Войнова Н.В.
  • Тимошкина Н.Н.
RU2198929C2
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕНОТОКСИЧНОСТИ ХИМИЧЕСКИХ ВЕЩЕСТВ 2000
  • Сазыкина М.А.
  • Чистяков В.А.
  • Войнова Н.В.
RU2179581C1
Набор стрессиндуцируемых lux-биосенсоров на основе клеток Bacillus subtilis для исследования механизмов токсичности 2022
  • Баженов Сергей Владимирович
  • Кессених Андрей Григорьевич
  • Новоятлова Ульяна Сергеевна
  • Гнучих Евгений Юрьевич
  • Котова Вера Юрьевна
  • Манухов Илья Владимирович
RU2811895C2
БИОХЕМИЛЮМИНЕСЦЕНТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ФАГОЦИТАРНОЙ АКТИВНОСТИ НЕЙТРОФИЛОВ 2007
  • Дерябин Дмитрий Геннадьевич
  • Каримов Ильшат Файзелгаянович
RU2366953C2

Иллюстрации к изобретению RU 2 614 267 C1

Реферат патента 2017 года Способ определения токсичности химических веществ, генерирующих активные формы кислорода

Изобретение относится к способу определения токсичности химических веществ, генерирующих активные формы кислорода. Способ предусматривает добавление рибофлавина до конечной концентрации 1⋅10-5 мг/мл - 1⋅10-3 мг/мл в культуру Escherichia coli К12 MG1655 с плазмидой PkatG-lux, в которой lux оперон биолюминесценции морских фотобактерий Photobacterium leiognathi, Vibrio fischeri или Photorabdus luminescens поставлен под контроль промотора PkatG. Осуществляют добавление тестируемого вещества и определение интенсивности люминесценции полученной суспензии и контроля. О повреждающем действии тестируемого вещества судят по отклонению интенсивности люминесценции суспензии от контроля. Изобретение обеспечивает увеличение фактора индукции. 3 з.п. ф-лы, 1 ил., 2 пр.

Формула изобретения RU 2 614 267 C1

1. Способ определения токсичности химических веществ, генерирующих активные формы кислорода, характеризующийся тем, что в культуру Escherichia col К12 MG1655, содержащую плазмиду PkatG-lux, в которой lux оперон биолюминесценции морских фотобактерий Photobacterium leiognathi, Vibrio fischeri или Photorabdus luminescens поставлен под контроль промотора PkatG, добавляют рибофлавин до конечной концентрации 1⋅10-3 мг/мл - 1⋅10-5 мг/мл, добавляют тестируемое вещество и определяют интенсивность люминесценции полученной суспензии и контроля, а о повреждающем действии тестируемого вещества судят по отклонению интенсивности люминесценции суспензии от контроля.

2. Способ по п.1, характеризующийся тем, что культуру Escherichia coli предварительно выращивают на жидкой питательной полноценной среде Луриа-Бертани.

3. Способ по п.1, характеризующийся тем, что культуру Escherichia coli после предварительного выращивания доводят до плотности 0,01-0,1 единица Мак-Фарланда и концентрация 3⋅107-3⋅106 клеток/мл.

4. Способ по п.1, характеризующийся тем, что контроль в качестве вещества сравнения содержит деионизированную воду в эквивалентном объеме.

Документы, цитированные в отчете о поиске Патент 2017 года RU2614267C1

ПТИЦЫН Л.Р
Метаболическая инженерия штаммов Escherichia coli - биосенсоров, продуцентов цитокинов, факторов роста и низкомолекулярных веществ
Диссертация
Многоступенчатая активно-реактивная турбина 1924
  • Ф. Лезель
SU2013A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
ГОРЯНИН И.И
и др
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
// ТРУДЫ МФТИ, 2013, т
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Клапанный регулятор для паровозов 1919
  • Аржанников А.М.
SU103A1
BACHMANN H
et al
Luciferase detection during stationary phase in Lactococcus lactis // Applied and Environmental Microbiology, 2007, pp
Машина для подземной прокладки электрических кабелей 1924
  • Морозов В.И.
SU4704A1

RU 2 614 267 C1

Авторы

Чистяков Владимир Анатольевич

Празднова Евгения Валерьевна

Мазанко Мария Сергеевна

Белик Тимур Викторович

Чмыхало Виктор Константинович

Брень Анжелика Борисовна

Даты

2017-03-24Публикация

2016-01-12Подача