Способ активации углеродного материала из вискозных волокон для получения электродов суперконденсаторов Российский патент 2017 года по МПК H01G11/34 B82Y30/00 

Описание патента на изобретение RU2638935C1

Изобретение относится к электротехнике, а именно к способу активации углеродного материала из вискозного волокна для изготовления электродов электрохимических конденсаторов, и может быть использовано при создании высокоэффективных накопителей электрической энергии, например источников бесперебойного питания для телекоммуникационных систем, источников энергии для силовых приводов и трансмиссий и т.п.

Наиболее важной характеристикой электрохимических конденсаторов является величина электрической емкости. Количество электрических зарядов, аккумулируемых электростатическими силами, зависит от поверхности соприкосновения электрод/электролит и от доступности зарядов к поверхности соприкосновения между электродом и электролитом.

Теоретически, чем больше площадь поверхности и концентрация электролита, тем больше емкость. Эта поверхность зависит от типа углерода и условий его получения. Если развитая поверхность углерода в значительной степени состоит из микропор (<2 нм), она частично или совсем недоступна для ионов. Поэтому для изменения структуры и морфологии углеродные материалы на практике подвергают активации одновременным воздействием температуры и активных сред.

Известен способ получения активированного материала, согласно которому перемещают углеродсодержащий субстрат в пределах реакционной камеры либо через электрическую дугу в зазоре между двумя электродами, мимо электрода таким образом, что электрическая дуга существует между электродом и подложкой при температуре и времени, эффективных для активации углеродсодержащего субстрата (US 20110286490 А1, 24.11.2011).

Известен способ активации углеволокнистых материалов, описанный в статье С.А. Серенко, ЭЛЕКТРОДНЫЕ МАТЕРИАЛЫ ДЛЯ СУПЕРКОНДЕНСАТОРОВ НА ОСНОВЕ УГЛЕРОДНЫХ ВОЛОКОН, МОДИФИЦИРОВАННЫХ ЧАСТИЦАМИ ДИОКСИДА ТИТАНА, XVII Международная научно-практическая конференция «СОВРЕМЕННЫЕ ТЕХНИКА И ТЕХНОЛОГИИ» Секция 12: Наноматериалы, нанотехнологии и новая энергетика, стр. 441-442, согласно которому осуществляют предварительный прогрев образца УВМ (15 мин, 200°С), далее прогретый исследуемый материал УВМ помещают в ячейку и вакуумируют, затем через рабочий объем системы в течение 2 часов пропускают поток газообразного TiCl4 и через определенные промежутки времени источник TiCl4 перекрывают и ячейку продувают увлажненным аргоном, далее проводят сушку материала при комнатных условиях (48 ч для завершения всех процессов), прогревают материал в течение 2 ч при температуре 300°С.

Также известен способ активации углеволокнистых материалов, описанный в статье Gregory Salitra, Abraham Soffer, Linoam Eliad, Yair Cohen, and Doron Aurbach, Carbon Electrodes for Double-Layer Capacitors, Journal of The Electrochemical Society, 147 (7) 2486-2493 (2000), согласно которому углеродный материал из хлопка активируют в печи при температуре 900°С в атмосфере СО2 в течение от 0,5 до 5 ч.

Наиболее близким решением к заявленному изобретению является способ активации углеволокнистых материалов, описанный в источнике информации: Hui Qian, Hele Diao, Natasha Shirshova, Emile S. Greenhalgh, Joachim G.H. Steinke, Milo S.P. Shaffer, Alexander Bismarck, Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors, Journal of Colloid and Interface Science 395 (2013) 241-248, согласно которому осуществляют пропитку углеродного волокна в растворе КОН различных концентраций, после чего проводят сушку в вакуумной печи при температуре 80°С, после активируют образцы в печи при температуре 800°С в течение 30 мин в атмосфере N2.

Недостатками упомянутых выше известных из уровня техники способов являются большие затраты на исходный материал и невысокая величина электрической емкости при производстве электродов суперконденсаторов.

Технический результат - увеличение площади активной поверхности углеродного материала из вискозного волокна и, как результат, повышение электропроводности электродов суперконденсаторов.

Технический результат достигается тем, что способ активации углеродного материала из вискозного волокна заключается в том, что способ содержит две стадии, на первой из которых осуществляют пропитку волокон 5% раствором ортофосфорной кислоты на водяной бане, сушку волокон в вытяжном шкафу, помещение одной части пропитанных волокон в высокотемпературный кварцевый реактор, размещенный в муфельной печи, осуществление пиролиза в потоке аргона со скоростью 800 мл/мин, при этом муфельную печь нагревают со скоростью 5°/мин до 900°С, отключают аргон и волокна выдерживают при температуре 900°С в течение 40 мин в потоке СО2 со скоростью 800 мл/мин, далее отключают СО2 и охлаждают волокна в потоке аргона до комнатной температуры для получения углеродного материала, на второй стадии полученный углеродный материал помещают в высокотемпературный кварцевый реактор перпендикулярно потоку аргона, а другую часть вискозных волокон помещают в низкотемпературный кварцевый реактор, размещенный во второй муфельной печи, при этом реакторы соединяют последовательно между собой с одним входом для аргона и одним выходом для использованных газов, проводят нагрев высокотемпературного кварцевого реактора с углеродным материалом до 700°С со скоростью 10°/мин в потоке аргона со скоростью 200 мл/мин, причем низкотемпературный кварцевый реактор отключен, при достижении высокотемпературным кварцевым реактором заданной температуры включают низкотемпературный кварцевый реактор и нагревают его до 400°С со скоростью 5°/мин в потоке аргона со скоростью 200 мл/мин, а высокотемпературный кварцевый реактор выдерживают при температуре 700°С, при этом обдув углеродного материала осуществляют помимо аргона отходящими газами, которые образовались в результате пиролиза вискозных волокон на первой стадии и затем осуществляют охлаждение полученного углеродного материала в обеих печах в потоке аргона.

Краткий перечень чертежей

На фиг. 1 представлена общая схема установки для активации углеродного материала из вискозного волокна, где 1 и 2 - муфельные печи, 3 - реактор высокотемпературный, 4 - реактор низкотемпературный, 5 - соединение реакторов, 6 - баллон с аргоном.

На фиг. 2 представлены кривые ЦВА для полученного материала.

На фиг. 3 представлена кривая гальваностатического заряда-разряда для полученного материала.

Сущность изобретения заключается в том, что способ активации углеродного материала из вискозных волокон осуществляется в две стадии.

Первая стадия заключается в приготовлении вискозного волокна к пиролизу и пиролиз. Ткань пропитывали 5% раствором ортофосфорной кислоты (5 мл Н3РО4 + 95 мл Н2О) на водяной бане в течение 30 мин. Затем вискозное волокно сушат в вытяжном шкафу на протяжении 12 ч. Подготовленное вискозное волокно помещают в кварцевый реактор (3), который помещают в муфельную печь (1) и подвергают пиролизу в потоке аргона со скоростью 800 мл/мин. Печь нагревают со скоростью 5°/мин до 900°С. После окончания пиролиза отключают аргон и выдерживают образцы при 900°С в течение 40 мин в потоке СО2 со скоростью 800 мл/мин, а затем отключают СО2 и охлаждают образцы в потоке аргона до комнатной температуры. Получают углеродный материал.

С целью увеличения выхода углерода при получении углеродного материала из вискозных волокон и увеличения активности поверхности углеродного материала для получения большей удельной емкости дополнительно введена вторая стадия, в результате которой используют исходное вискозное волокно, помещенное во второй кварцевый реактор (низкотемпературный реактор).

Вторая стадия заключается в том, что исходное вискозное волокно, пропитанное 5% раствором ортофосфорной кислоты, помещают в низкотемпературный кварцевый реактор (4), а приготовленный на первой стадии углеродный материал помещают в высокотемпературный реактор (3) перпендикулярно потоку газа. После загрузки образцов реакторы соединяют (5) последовательно между собой с одним входом для аргона и одним выходом для использованных газов и проводят поэтапный нагрев. Причем баллон с газом (6) соединен с низкотемпературным реактором (4). Вначале нагревали высокотемпературный реактор (3) с образцами углеродного материала до заданной температуры (700°С) со скоростью 10°/мин в потоке аргона со скоростью 200 мл/мин. При этом низкотемпературный реактор (4) отключен. После достижения высокотемпературным реактором заданной температуры включают низкотемпературный реактор и нагревают его до 400°С со скорость 5°/мин в потоке аргона со скоростью 200 мл/мин и выдерживают 30 мин, а в то же время высокотемпературный реактор выдерживают при 700°С. При этом углеродный материал, находящийся в высокотемпературном реакторе, обдувается помимо аргона еще и отходящими газами, образованными в результате пиролиза вискозного волокна первой стадии и выходящими из низкотемпературного реактора. Выделяемые при пиролизе вискозы вещества, подхватываемые потоком аргона, направляются в высокотемпературный реактор, где активно взаимодействуют с поверхностью готового углеродного материала, изменяя форму пор и их распределение по размерам. Конечной стацией является охлаждение углеродного материала в печах в потоке аргона до 300°С в течение 3 ч.

Из полученного углеродного материала изготовили ячейки суперконденсатора и определили их электрохимические свойства, как в водном электролите, так и в электролите на основе органических жидкостей. В таблице 1 приведены данные по выходу углерода, удельной емкости и КПДE ячейки суперконденсатора, где в качестве электродов использован углеродный материал из вискозных волокон.

Электрохимические свойства тестируемых ячеек исследовали с помощью циклической вольтамперометрии (ЦВА) (фиг. 2) и измерением гальваностатического заряда-разряда (фиг. 3).

Результаты экспериментов приведены в таблице 2. Анализ данных таблицы показывает, что прирост массы углерода составляет в среднем 12%. Происходил также определенный прирост удельной емкости. В несколько большей степени увеличивалась удельная энергия от 21 Вт⋅ч/кг до около 30 Вт⋅ч/кг.

Удалось получить прирост удельной поверхности между 1400 и 1900 м2/г и прирост удельной емкости от 78 Ф/г до 150 Ф/г. Модификация поверхности УВ привела также к уменьшению внутреннего сопротивления.

Таким образом, описанный способ позволяет обеспечить достижение технического результата, заключающегося в увеличении площади активной поверхности углеродного материала из вискозных волокон.

Похожие патенты RU2638935C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ УГЛЕРОДНЫХ ВОЛОКОН 2018
  • Нелюб Владимир Александрович
  • Горберг Борис Львович
  • Берлин Александр Александрович
RU2698809C1
Гидрофобный фильтр для сбора нефтепродуктов с поверхности воды и способ его получения 2016
  • Астахов Михаил Васильевич
  • Аверкин Валерий Николаевич
  • Телемисова Айгерим Кадыровна
  • Пирзадаева Нурайным Нургабылкызы
  • Кречетов Илья Сергеевич
  • Кунду Манаб
  • Никифорова Алёна Сергеевна
  • Кострица Владимир Николаевич
  • Багров Валерий Владимирович
RU2633891C1
КРЕМНИЙСОДЕРЖАЩИЙ УГЛЕРОДНЫЙ СОРБЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Хохлова Галина Павловна
  • Ефимова Ольга Сергеевна
  • Патраков Юрий Федорович
RU2417836C2
СПОСОБ ПОЛУЧЕНИЯ МЕДЬ-НИКЕЛЬ-ОКСИД-УГЛЕРОДНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2021
  • Иванов Петр Алексеевич
  • Мокрушин Иван Геннадьевич
  • Красновских Марина Павловна
RU2776277C1
СПОСОБ ПОЛУЧЕНИЯ АКТИВИРОВАННОГО УГЛЯ 2010
  • Воскобойников Игорь Васильевич
  • Кондратюк Владимир Александрович
  • Константинова Светлана Алексеевна
  • Щелоков Вячеслав Михайлович
  • Гаврилов Эдуард Федорович
  • Шевченко Александр Онуфриевич
RU2490207C2
Способ получения углеродных графитированных волокнистых материалов 2019
  • Черненко Дмитрий Николаевич
  • Черненко Николай Михайлович
  • Щербакова Татьяна Сергеевна
  • Грудина Иван Геннадьевич
RU2705971C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ ВОЛОКНИСТЫХ МАТЕРИАЛОВ 2015
  • Живетин Валерий Владимирович
  • Зайцев Михаил Вячеславович
  • Артемов Арсений Валерьевич
RU2596752C1
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ЭФФЕКТИВНЫХ УГЛЕРОДНЫХ СОРБЕНТОВ И ПОЛЕЗНЫХ ПРОДУКТОВ ТЕРМОЛИЗА 2019
  • Исмагилов Зинфер Ришатович
  • Михайлова Екатерина Сергеевна
  • Дудникова Юлия Николаевна
  • Хайрулин Сергей Рифович
  • Шикина Надежда Васильевна
RU2709349C1
Способ получения монооксида углерода из лигнина гидролизного под действием CO 2020
  • Медведев Артем Анатольевич
  • Кустов Александр Леонидович
  • Бельдова Дарья Алексеевна
  • Прибытков Петр Вадимович
  • Костюхин Егор Максимович
  • Кустов Леонид Модестович
RU2741006C1
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛ-ОКСИД-УГЛЕРОДНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2023
  • Мокрушин Иван Геннадьевич
  • Красновских Марина Павловна
  • Иванов Петр Алексеевич
  • Курунова Екатерина Александровна
  • Новоселов Константин Павлович
  • Лебедева Дарья Александровна
RU2808985C1

Иллюстрации к изобретению RU 2 638 935 C1

Реферат патента 2017 года Способ активации углеродного материала из вискозных волокон для получения электродов суперконденсаторов

Изобретение относится к области электротехники, а именно к активации углеродного материала из вискозных волокон для изготовления электродов электролитических суперконденсаторов. Сущность изобретения заключается в том, что способ содержит две стадии, на первой из которых осуществляют пропитку волокон 5% раствором ортофосфорной кислоты на водяной бане, сушку волокон в вытяжном шкафу, помещение одной части пропитанных волокон в высокотемпературный кварцевый реактор, размещенный в муфельной печи, осуществление пиролиза в потоке аргона со скоростью 800 мл/мин, при этом муфельную печь нагревают со скоростью 5°/мин до 900°С, отключают аргон и волокна выдерживают при температуре 900°С в течение 40 минут в потоке СО2 со скоростью 800 мл/мин, далее отключают СО2 и охлаждают волокна в потоке аргона до комнатной температуры для получения углеродного материала, на второй стадии полученный углеродный материал помещают в высокотемпературный кварцевый реактор перпендикулярно потоку аргона, а другую часть вискозных волокон помещают в низкотемпературный кварцевый реактор, размещенный во второй муфельной печи, при этом реакторы соединяют последовательно между собой с одним входом для аргона и одним выходом для использованных газов, проводят нагрев высокотемпературного кварцевого реактора с углеродным материалом до 700°С со скоростью 10°/мин в потоке аргона со скоростью 200 мл/мин, причем низкотемпературный кварцевый реактор отключен, при достижении высокотемпературным кварцевым реактором заданной температуры включают низкотемпературный кварцевый реактор и нагревают его до 400°С со скоростью 5°/мин в потоке аргона со скоростью 200 мл/мин, а высокотемпературный кварцевый реактор выдерживают при температуре 700°С, при этом обдув углеродного материала осуществляют помимо аргона отходящими газами, которые образовались в результате пиролиза вискозных волокон на первой стадии и затем осуществляют охлаждение полученного углеродного материала в обеих печах в потоке аргона. Увеличение площади активной поверхности углеродного материала и повышение удельной емкости суперконденсатора является техническим результатом изобретения. 3 з.п. ф-лы, 2 табл., 3 ил.

Формула изобретения RU 2 638 935 C1

1. Способ активации углеродного материала из вискозных волокон для получения электродов суперконденсаторов, заключающийся в приготовлении вискозных волокон, включающем пропитку, сушку, в пиролизе, включающем выдержку волокон при высокой температуре в потоке газа, и в охлаждении, отличающийся тем, что способ содержит две стадии, на первой из которых осуществляют пропитку волокон 5% раствором ортофосфорной кислоты на водяной бане, сушку волокон в вытяжном шкафу, помещение одной части пропитанных волокон в высокотемпературный кварцевый реактор, размещенный в муфельной печи, осуществление пиролиза в потоке аргона со скоростью 800 мл/мин, при этом муфельную печь нагревают со скоростью 5°/мин до 900°C, отключают аргон и волокна выдерживают при температуре 900°C в течение 40 мин в потоке СО2 со скоростью 800 мл/мин, далее отключают СО2 и охлаждают волокна в потоке аргона до комнатной температуры для получения углеродного материала, на второй стадии полученный углеродный материал помещают в высокотемпературный кварцевый реактор перпендикулярно потоку аргона, а другую часть вискозных волокон помещают в низкотемпературный кварцевый реактор, размещенный во второй муфельной печи, при этом, реакторы соединяют последовательно между собой с одним входом для аргона и одним выходом для использованных газов, проводят нагрев высокотемпературного кварцевого реактора с углеродным материалом до 700°C со скоростью 10°/мин в потоке аргона со скоростью 200 мл/мин, причем низкотемпературный кварцевый реактор отключен, при достижении высокотемпературным кварцевым реактором заданной температуры включают низкотемпературный кварцевый реактор и нагревают его до 400°C со скоростью 5°/мин в потоке аргона со скоростью 200 мл/мин, а высокотемпературный кварцевый реактор выдерживают при температуре 700°C, при этом обдув углеродного материала осуществляют помимо аргона отходящими газами, которые образовались в результате пиролиза вискозных волокон на первой стадии и затем осуществляют охлаждение полученного углеродного материала в обеих печах в потоке аргона.

2. Способ по п. 1, отличающийся тем, что пропитку волокна осуществляют в течение 30 минут.

3. Способ по п. 1, отличающийся тем, что сушку волокна проводят в течение 12 часов.

4. Способ по п. 1, отличающийся тем, что охлаждение в печах в потоке аргона проводят до 300°C в течение 3 ч.

Документы, цитированные в отчете о поиске Патент 2017 года RU2638935C1

HUI QIAN, Hele Diao, Natasha Shirshova, Emile S
Greenhalgh, Joachim G.H
Steinke, Milo S.P
Shaffer, Alexander Bismarck, Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors, Journal of Colloid and Interface Science 395 (2013) 241-248
ЭЛЕКТРОД ДЛЯ ИСПОЛЬЗОВАНИЯ В ЭЛЕКТРОХИМИЧЕСКОМ КОНДЕНСАТОРЕ С ДВОЙНЫМ ЭЛЕКТРИЧЕСКИМ СЛОЕМ (ВАРИАНТЫ) 2007
  • Казарян Самвел Авакович
  • Харисов Гамир Галиевич
  • Разумов Сергей Николаевич
  • Литвиненко Сергей Витальевич
  • Шумовский Вячеслав Иванович
RU2483383C2
МНОГОЭЛЕМЕНТНЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОНДЕНСАТОР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2010
  • Гинатулин Юрий Мидхатович
  • Десятов Андрей Викторович
  • Асеев Антон Владимирович
  • Кубышкин Александр Петрович
  • Сиротин Сергей Иванович
  • Булибекова Любовь Владимировна
  • Ли Любовь Денсуновна
RU2419907C1
CN104835651 A, 12.08.2015
US 2011286490 A1, 24.11.2011.

RU 2 638 935 C1

Авторы

Астахов Михаил Васильевич

Калашник Анатолий Трофимович

Стаханова Светлана Владленовна

Казенас Екатерина Евгеньевна

Лепкова Татьяна Львовна

Амелина Дарья Евгеньевна

Галимзянов Руслан Равильевич

Климонт Анастасия Александровна

Кречетов Илья Сергеевич

Семушин Кирилл Алексеевич

Табаров Фаррух Саадиевич

Кострица Владимир Николаевич

Багров Валерий Владимирович

Даты

2017-12-19Публикация

2016-12-21Подача