Способ изготовления микроигл и массива микроигл Российский патент 2019 года по МПК H01L21/308 

Описание патента на изобретение RU2677491C1

Изобретение относится к области изготовления микромеханических устройств, а именно, например, к способам формирования микроигл кантилеверов. Также может использоваться в области медицины и биотехнологий, в частности применительно к устройствам для осуществления инъекций, а именно к микроиглам, создаваемым технологиями, совместимыми с технологиями изготовления интегральных схем.

Известен способ изготовления микроиглы в интегральном исполнении, включающий формирование на подложке многослойной структуры, образующей напряженную гетероструктуру, и жертвенного слоя, расположенного между данной гетероструктурой и подложкой, причем слой напряженной гетероструктуры, расположенный дальше от жертвенного слоя, сформирован из материала с меньшей постоянной решетки, затем в напряженной гетероструктуре изготовляют окно, открывающее доступ травителя к жертвенному слою и ограничивающее предназначенную для изготовления микроиглы область гетероструктуры, из-под которой затем с помощью селективного направленного бокового травления удаляют жертвенный слой. Направленное боковое травление осуществляют, накрывая поверхность напряженной гетероструктуры пластиной, смоченной в буферном растворе, что препятствует доступу травителя в накрытую часть, затем растворяют жертвенный слой только в областях, не закрытых пластиной, причем пластину направленно сдвигают, последовательно обнажая области гетероструктуры, подвергаемые травлению.

Кроме того, направленное боковое травление осуществляют за счет того, что на поверхности напряженной гетероструктуры формируют дополнительный слои из растворимого в травителе материала, причем толщина слоя минимальна в области начала травления жертвенного слоя, и ее увеличивают по направлению травления, а время травления дополнительного слоя лимитирует время травления жертвенного слоя [1].

Недостатком способа изготовления этих микроигл является трудоемкая, обладающая низкой воспроизводимостью технология изготовления игл. При формировании массива - матрицы микроигл/ - отсутствие поддерживающих элементов - мостов маски в процессе травления приводит к воздействию травителей на острие иглы, а это ухудшает точность воспроизведения микроигл.

Известен способ изготовления игл кантилевера, включающий формирование на верхней стороне кремниевой подложки с ориентацией 100 иглообразного выступа анизотропным травлением кремния через локальную нитридную маску [2].

Недостатками способа является то, что в конце процесса анизотропного травления кремния через нитридную маску при формировании острия иглы происходит «сваливание» маски со сформированного острия иглы, и процесс травления продолжается без надежной защиты острия иглы от воздействия на него травителя. На острие иглы появляются скосы вершин, что приводит к снижению разрешающей способности кантилевера и повышению количества бракованных изделий.

Задачей, на решение которой направлено изобретение, является снижение трудоемкости изготовления и повышения качества и точности воспроизведения микроигл.

Поставленная задача достигается за счет того, что в способе изготовления микроигл и массива микроигл, заключающемся в нанесении на верхней поверхности монокристаллической кремниевой подложки с ориентацией (100) защитной пленки, формировании в ней маски и последующем локальном анизотропном травлении кремния, заодно с формированием маски между маской и периферийной областью защитной пленки, образующей при травлении внешнюю рамку, а также между соседними масками при изготовлении массива микроигл, формируются поддерживающие элементы - подвесы, например, в форме полос или пилообразных зубцов, причем поддерживающие элементы - подвесы формируются так, что направление продольной оси поддерживающих элементов - подвесов совпадает с кристаллографическим направлением <111>.

Отличительной особенность заявленного способа является то, что заодно с формированием маски между маской и периферийной частью защитной пленки, образующей при травлении внешнюю рамку, а также между соседними масками при изготовлении массива микроигл, формируются поддерживающие элементы - подвесы, например, в форме полос или пилообразных зубцов, причем поддерживающие элементы -подвесы формируются так, что направление продольной оси поддерживающих элементов - подвесов совпадает с кристаллографическим направлением <111>. Такое формирование поддерживающих элементов - подвесов между масками устраняет возможность «сваливания» маски при формировании острия иглы и исключает воздействие травителя на острие в конце процесса анизотропного травления, что значительно повышает точность воспроизведения микроигл. Это происходит из-за того, что в процессе травления отдельно сформированные маски для микроигл соединены поддерживающими элементами - подвесами, и к моменту окончания формирования микроиглы образуется полость между подложкой, на которой формируются микроиглы, и маской, которая «висит» за счет поддерживающих элементов - подвесов, так как их продольные оси совпадают с направлением <111>и при окончании травления между масками микроигл образуется прочная связь.

Предлагаемое изобретение иллюстрируется чертежами фиг. 1, фиг. 2, фиг. 3, фиг. 4, фиг. 5.

На фиг. 1 схематично изображено формирование микроигл способом, реализующимся и использующимся до настоящего изобретения:

а - нанесение защитной пленки на пластину,

б - формирование маски,

в - анизотропное травление через маску,

г - формирование микроигл,

д - «сваливание» маски и формирование скосов микроигл.

На фиг. 2 изображен фрагмент маски для формирования микроигл и массива микроигл с поддерживающими элементами - подвесами между соседними масками в форме пилообразных зубцов. На фиг. 3 изображен фрагмент маски для формирования микроигл и массива микроигл с поддерживающими элементами - подвесами в форме полос между маской и внешней рамкой. На фиг. 4 схематично изображен общий вид пластины со сформированными масками с поддерживающими элементами - подвесами между соседними масками в форме пилообразных зубцов и между крайними масками и внешней рамкой в форме полос. На фиг. 5 схематично изображено формирование микроигл по заявленному способу,

где:

1 - пластина,

2 - защитная пленка,

3 - маска,

4 - поддерживающие элементы - подвесы между соседними масками в форме пилообразных зубцов,

5 - поддерживающие элементы - подвесы между крайними масками и внешней рамкой в форме полос,

6 - внешняя рамка,

7 - микроигла.

Способ реализуется следующим образом (фиг. 5). На пластину 1 наносят защитную пленку 2, проводят экспонирование для формирования маски 3 с поддерживающими элементами - подвесами в форме пилообразных зубцов 4 между соседними масками и в форме полос 5 между крайними масками и внешней рамкой 6.

Проводят анизотропное травление через маску 3 до формирования микроиглы 7. Затем маску 3 с поддерживающими элементами - подвесами в форме пилообразных зубцов 4 между соседними масками и в форме полос 5 между крайними масками и внешней рамкой 6 удаляют, обнажая острие микроигл 7. Сформировавшийся массив с микроиглами 7 готов к использованию по назначению.

По окончании анизотропного травления через маску 3 над микроиглой 7 поддерживающие элементы - подвесы 4 и 5, сформированные заодно с маской 3 и соединенные с внешней рамкой 6, образуют подвесную конструкцию. Между подвесной конструкцией и вытравленной плоскостью кремниевой подложки, толщина которой после травления уменьшилась на высоту микроиглы, образуется воздушная полость. Подвесная конструкция защищает кончики углы от воздействия травителя, тем самым обеспечивая повышения качества и точность воспроизведения микроигл и уменьшая трудоемкость производства.

Пример.

На пластине монокристаллического кремния 150 КДБ 12 (100)-640 термическим окислением при температуре 1100°С в течение 65 мин в водяном паре на поверхности монокристаллического кремния формируют пленку диоксида кремния толщиной 0,3 мкм при нормальном атмосферном давлении. Затем наносят фоторезист ФП-383. Проводят первую фотолитографию. Проводят плазмохимическое травление (вертикальное) двуокиси кремния SiO2. Далее проводят плазмохимическое травление кремния Si на глубину 2-2,5 мкм. Затем проводят удаление фоторезиста в растворе КАРО. Проводят химобработку пластины. Затем вновь окисляют при температуре 1100°С в течение 65 мин в водяном паре с образованием на поверхности монокристаллического кремния пленки диоксида кремния SiO2 толщиной 0,3 мкм при нормальном атмосферном давлении. Далее осуществляют нанесение нитрида кремния Si3N4. Проводят вторую фотолитографию. Затем проводят плазмохимическое травление полученной защитной пленки. Далее проводят плазмохимическое удаление фоторезиста. Проводят анизотропное жидкостное травление пластины кремния Si в KOH (HSi=300 мкм). Удаляют защитную пленку до поверхности монокристаллической пластины кремния Si. Проводят химобработку пластин. Завершающий этап - резка пластин на элементарные чипы -отдельные матрицы микроигл.

Таким образом, предложенный способ обеспечивает снижение трудоемкости изготовления микроигл и массива микроигл, повышение точности воспроизведения микроигл и повышения их качества.

Источники информации:

1. Патент РФ №2179458.

2. Патент РФ №№2121657.

Похожие патенты RU2677491C1

название год авторы номер документа
Способ изготовления микроиглы в интегральном исполнении с внутренними каналами 2018
  • Рапидов Михаил Ольгердович
  • Панкратов Олег Вячеславович
RU2695771C1
МИКРОИГЛА В ИНТЕГРАЛЬНОМ ИСПОЛНЕНИИ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 1999
  • Принц А.В.
  • Селезнев В.А.
  • Принц В.Я.
RU2179458C2
СПОСОБ МИКРОПРОФИЛИРОВАНИЯ КРЕМНИЕВЫХ СТРУКТУР 2014
  • Тимошенков Сергей Петрович
  • Шилов Валерий Федорович
  • Миронов Сергей Геннадьевич
  • Рапидов Михаил Ольгердович
  • Тимошенков Алексей Сергеевич
RU2559336C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОСТРИЯ ЛЕЗВИЯ ИЛИ ИГЛЫ 2009
  • Принц Александр Викторович
  • Принц Виктор Яковлевич
RU2423083C1
ИЗГОТОВЛЕННЫЙ ЛИТЬЕВЫМ ПРЕССОВАНИЕМ МАССИВ МИКРОИГЛ И СПОСОБ ФОРМИРОВАНИЯ МАССИВА МИКРОИГЛ 2011
  • Росс Расселл Фредерик
RU2560646C9
СПОСОБ ИЗГОТОВЛЕНИЯ ГЛУБОКОПРОФИЛИРОВАННЫХ КРЕМНИЕВЫХ СТРУКТУР 2013
  • Тимошенков Сергей Петрович
  • Шилов Валерий Федорович
  • Рапидов Михаил Ольгердович
  • Миронов Сергей Геннадьевич
  • Тимошенков Алексей Сергеевич
  • Рубчиц Вадим Григорьевич
RU2539767C1
СПОСОБ ИЗГОТОВЛЕНИЯ КАНТИЛЕВЕРА СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА 2007
  • Матвеева Надежда Константиновна
  • Иванова Лариса Александровна
  • Шокин Алексей Никифорович
RU2335033C1
Способ изготовления микромеханических элементов из пластин монокристаллического кремния 2017
  • Рапидов Михаил Ольгердович
  • Панкратов Олег Вячеславович
RU2662499C1
СПОСОБ ИЗГОТОВЛЕНИЯ УПРУГИХ ЭЛЕМЕНТОВ ИЗ МОНОКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ 2002
  • Обухов В.И.
  • Карасёва Т.В.
  • Сычёв С.В.
RU2211504C1
Способ изготовления дифракционной кремниевой решетки типа эшелле 2023
  • Мохов Дмитрий Владимирович
  • Березовская Тамара Нарциссовна
  • Горай Леонид Иванович
RU2809769C1

Иллюстрации к изобретению RU 2 677 491 C1

Реферат патента 2019 года Способ изготовления микроигл и массива микроигл

Использование: для формирования микроигл. Сущность изобретения заключается в том, что способ изготовления микроигл и массива микроигл заключается в нанесении на верхней поверхности монокристаллической кремниевой подложки с ориентацией (100) защитной пленки, формировании в ней маски и последующем локальном анизотропном травлении кремния, при этом заодно с формированием маски между маской и периферийной областью защитной пленки, образующей при травлении внешнюю рамку, а также между соседними масками при изготовлении массива микроигл формируют поддерживающие элементы - подвесы, например, в форме полос или пилообразных зубцов, причем поддерживающие элементы - подвесы формируются так, что направление продольной оси поддерживающих элементов - подвесов совпадает с кристаллографическим направлением <111>. Технический результат: обеспечение возможности повышения качества и точности воспроизведения микроигл. 5 ил.

Формула изобретения RU 2 677 491 C1

Способ изготовления микроигл и массива микроигл, заключающийся в нанесении на верхней поверхности монокристаллической кремниевой подложки с ориентацией (100) защитной пленки, формировании в ней маски и последующем локальном анизотропном травлении кремния, отличающийся тем, что заодно с формированием маски между маской и периферийной областью защитной пленки, образующей при травлении внешнюю рамку, а также между соседними масками при изготовлении массива микроигл формируются поддерживающие элементы - подвесы, например, в форме полос или пилообразных зубцов, причем поддерживающие элементы - подвесы формируются так, что направление продольной оси поддерживающих элементов - подвесов совпадает с кристаллографическим направлением <111>.

Документы, цитированные в отчете о поиске Патент 2019 года RU2677491C1

2011
RU2570280C2
МИКРОИГЛА В ИНТЕГРАЛЬНОМ ИСПОЛНЕНИИ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 1999
  • Принц А.В.
  • Селезнев В.А.
  • Принц В.Я.
RU2179458C2
СПОСОБ ФОРМИРОВАНИЯ КАНТИЛЕВЕРА СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА 1997
  • Быков В.А.
  • Гологанов А.Н.
  • Шабратов Денис Владимирович
RU2121657C1
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОМЕХАНИЧЕСКИХ УПРУГИХ ЭЛЕМЕНТОВ 2015
  • Пауткин Валерий Евгеньевич
RU2601219C1
СПОСОБ МИКРОПРОФИЛИРОВАНИЯ КРЕМНИЕВЫХ СТРУКТУР 2014
  • Тимошенков Сергей Петрович
  • Шилов Валерий Федорович
  • Миронов Сергей Геннадьевич
  • Рапидов Михаил Ольгердович
  • Тимошенков Алексей Сергеевич
RU2559336C1
US 6787052 B1, 07.09.2004.

RU 2 677 491 C1

Авторы

Рапидов Михаил Ольгердович

Панкратов Олег Вячеславович

Даты

2019-01-17Публикация

2017-10-06Подача