Способ определения функционального зазора между поверхностями трения-скольжения Российский патент 2019 года по МПК F16C17/00 F16C33/10 

Описание патента на изобретение RU2692294C1

Изобретение относится к области машиностроения, в частности к способам исследования функционального и морфологического состояния одиночных и многоопорных подшипников скольжения в двигателях внутреннего сгорания (ДВС) и трубопроводных систем путем измерения радиальных зазоров между поверхностями трения-скольжения.

Известен способ определения толщины смазочного слоя между поверхностями трения, при котором осуществляют тарировку установленных на поверхности емкостных датчиков на масле без примеси воздуха при давлении и температуре окружающей среды, производят измерение толщины смазочного слоя (ТСС) и расшифровку результатов измерения по тарировочным зависимостям, определяя соотношение относительных диэлектрических проницаемостей масла, состояния которого соответствуют моментам измерения и тарировки, и производят пересчет толщины смазочного слоя [патент SU №1564430, МПК F16D 3/54, G01M 13/04, 15.05.1990].

Недостатком способа является отсутствие технической возможности проводить измерения ТСС в ряду соосных коренных подшипников скольжения коленчатого в процессе их сборки и эксплуатации, т.к. он предназначен только для исследования испытуемых деталей зубчатой муфты на стенде, и, соответственно, отсутствием возможности надежного контроля зазоров в подшипниках скольжения многоопорного узла и периодического выявления (мониторинга) критических торцевых зазоров в отдельных парах трения подшипник-шейка.

Известен способ измерения зазоров в подшипнике, посредством измерения толщины масляной пленки с помощью индуктивных датчиков, установленных на опорах коленчатого вала ДВС, коррекции полученных ими показаний и обработки данных, с последующим построением траекториидвижения шейки вала в окружности зазора [К вопросу определения толщины масляной пленки в коренных подшипниках коленчатого вала дизеля 8ЧВН 15/16 / Г.Г. Меньшенин, В.А. Санинский // Известия ОрелГТУ. -Машиностроение. Приборостроение. - 2006 г. - №.2. С. 137-142].

Недостатком способа является отсутствие технической возможности проводить измерения ТСС в процессе эксплуатации, технического обслуживания ДВС без их разборки.

Известен емкостный способ измерения толщины смазочного слоя (ТСС), состоящий в непрерывном определении толщины смазочного слоя по всей окружности в выбранном сечении подшипника путем измерения электрической емкости, вмонтированного в шейку вала датчика, являющегося конденсатором переменной емкости, и последующего пересчета величин емкости в значения ТСС. Емкостный датчик является подвижной обкладкой конденсатора. Противолежащий участок подшипника, является неподвижной обкладкой. Роль диэлектрика играет смазочное масло [Определение условий работы опор скольжения коленчатого вала автомобильного двигателя на основе оценки толщины смазочного слоя / Сыркин П.Э., Стешов В.В // Гидродинамическая теория смазки - 120 лет: Труды Международного научного симпозиума. В 2-х томах. Т. 1. - М.: Машиностроение-1, Орел: ОрелГТУ, 2006. - 650 с, С. 313-321].

Недостаток емкостного метода измерения толщины смазочного слоя заключается в отсутствии возможности активного контроля - отсутствие технической возможности проводить измерения толщины масляного слоя в процессе эксплуатации конструкции.

Задачей является разработка нового способа измерения толщины смазочного слоя (ТСС), обладающего технической возможностью проводить измерения в процессе эксплуатации узла или оборудования.

Техническим результатом заявленного способа является повышение точности определения величины радиальных зазоров в парах трения скольжения.

Технический результат достигается в способе определения функционального зазора между поверхностями трения-скольжения, посредством измерения толщины смазочного слоя в радиальных зазорах пар трения, при котором в смазочное масло вводят радиоактивные изотопы или радионуклиды, в количестве, достаточном для их регистрации, заполняют зазоры между поверхностями трения-скольжения полученным смазочным маслом, регистрируют датчиками для измерения радиоактивности прохождение радиоактивных частиц в не менее чем трех участках каждой исследуемой плоскости зазора и определяют толщину смазочного слоя, при полном заполнении зазора соответствующую величине радиального зазора пары трения.

Способ позволяет определять неравномерность толщины смазочного слоя (ТСС) как в разветвленных кольцевых каналах системы смазки, так и в различных точках кольцевого зазора, путем определения толщины смазочного слоя в плоскости, перпендикулярной направлению движения смазочного масла, а также определять объемы проходящего через зазоры смазочного материала, характеризующие величины радиальных зазоров в подшипниках скольжения.

Периодическое регистрирование необходимых функциональных пределов заданного радиального зазора между постоянно прирабатывающимися поверхностями контакта обеспечивает возможность своевременного вмешательства ремонтных служб и поддержания, требуемых пределов величины функционального зазора на нормированном уровне.

Исходя из определения толщины смазочного слоя, определяют величины радиальных зазоров между рабочими поверхностями контакта (поверхностями трения-скольжения).

В качестве радиоактивных изотопов могут использоваться изотопы из семейства короткоживущих радионуклидов препаратов самария-153, олова-117m, генераторов рения-188. В смазочный материал радиоактивные изотопы вводят предварительно, обеспечивая их определеннуюравномерную концентрацию во всем объеме, достаточную для возможности их регистрации датчиками для измерения радиоактивности. Способ осуществляется следующим образом

Пример 1. Способ определения функционального зазора между поверхностями трения-скольжения в центре трубопроводных систем.

Для определения ТСС в радиальный зазор подают смазочную среду (масло). В смазочное масло предварительно вводят радиоактивные изотопы. По периметру сечения каналов на входе и выходе смазочной среды устанавливают не менее трех датчиков для измерения радиоактивности, при этом сигналы от датчика регистрируют по всему периметру каналов, определяя толщину смазочного слоя, соответствующую величине зазора.

При прохождении радиоизотопов в составе смазочного масла через зазор подшипника в точке установки датчика, происходит их регистрация и последующий пересчет полученных величин в значения ТСС.

Значение ТСС сравнивают с нормированным эталоном экстремальных значений, определяя тем самым, например, превышение величины радиального зазора, после чего устраняют избыточные радиальные зазоры для достижения нужной величины смазочного слоя и повторяют приемы регистрации, измерения и корректировки до достижения оптимальной толщины смазосного слоя.

Пример 2. Способ определения функционального зазора между поверхностями трения-скольжения в подшипниковом узле скольжения.

Зазоры подшипникового узла скольжения заполняются смазочной средой (масло), которая распределяется по всем поверхностям контакта (скольжения). Датчики для измерения радиоактивности (устанавливают не менее трех датчиков) регистрируют количество изотопов в сканируемом слое смазочной среды. По полученной информации определяют объемы смазочного слоя зазорах и, соответственно, пересчитывают ее в величину радиальных зазоров, сравнивают с нормированным эталоном экстремальных значений и определяют вектор направлений наибольшего значениярадиального зазора и превышение величины диаметрального зазора. При обнаружении критических нарушений, осуществляют корректировку величины диаметральных зазоров.

Таким образом, способ определения функционального зазора между поверхностями трения-скольжения, посредством измерения толщины смазочного слоя в радиальных зазорах пар трения, при котором в смазочное масло вводят радиоактивные изотопы или радионуклиды, в количестве, достаточном для их регистрации, заполняют зазоры между поверхностями трения-скольжения полученным смазочным маслом, регистрируют датчиками для измерения радиоактивности прохождение радиоактивных частиц в не менее чем трех участках каждой исследуемой плоскости зазора и определяют толщину смазочного слоя, при полном заполнении зазора соответствующую величине радиального зазора пары трения обеспечивает повышение точности определения величины радиальных зазоров в парах трения скольжения.

Похожие патенты RU2692294C1

название год авторы номер документа
Способ сборки подшипника качения 2016
  • Санинский Владимир Андреевич
  • Чигиринский Юлий Львович
  • Худяков Константин Валентинович
  • Смирнова Елена Николаевна
  • Столяров Никита Игоревич
RU2627258C1
СПОСОБ КОМПЛЕКТОВАНИЯ МНОГООПОРНОГО УЗЛА ПОДДЕРЖКИ КОЛЕНЧАТОГО ВАЛА 2011
  • Санинский Владимир Андреевич
  • Петрухин Алексей Владимирович
  • Москвичева Наталия Павловна
  • Колышев Олег Юрьевич
RU2469219C1
Способ измерения толщины смазочного слоя между цилиндрической обоймой и телами качения и устройство для его осуществления 1991
  • Панов Виктор Борисович
SU1812472A1
Способ динамической оценки состояния пары трения механизма 1987
  • Шевченко Александр Иванович
  • Якунин Николай Николаевич
  • Абдрашитов Рамзес Талгатович
SU1523941A1
Способ управления характеристиками подшипника скольжения при помощи температуры и подшипник скольжения для его реализации 2020
  • Овчаренко Николай Юрьевич
RU2750182C1
СПОСОБ КОНТРОЛЯ РАДИОАКТИВНОГО ОБЛУЧЕНИЯ ЧЕЛОВЕКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Новиков Игорь Кимович
  • Семенов Юрий Викторович
RU2112993C1
СИСТЕМА И СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ РАДИОФАРМАЦЕВТИЧЕСКИХ ПРЕПАРАТОВ 2011
  • Маби Марк А.
  • Маккатчен Ларри А.
  • Бутон Чад Е.
  • Дворски Джеймс Е.
RU2599866C2
СПОСОБ ОЦЕНКИ СИЛЫ И КОЭФФИЦИЕНТА ТРЕНИЯ ПРИ ХОЛОДНОЙ ОБРАБОТКЕ МЕТАЛЛОВ ДАВЛЕНИЕМ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2013
  • Абрамов Алексей Николаевич
  • Тюленев Денис Генрихович
  • Гизатуллин Расим Ильдарович
  • Филиппова Надежда Александровна
  • Корытова Ольга Сергеевна
  • Боткин Александр Васильевич
RU2538673C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПРОТИВОЗАДИРНЫХ И АНТИФРИКЦИОННЫХ СВОЙСТВ СМАЗОЧНЫХ МАТЕРИАЛОВ 2023
  • Шолом Владимир Юрьевич
  • Поляков Андрей Борисович
  • Тюленев Денис Генрихович
  • Абрамов Алексей Николаевич
  • Шолом Андрей Владимирович
  • Пилюгин Семен Михайлович
  • Абрамов Кирилл Алексеевич
  • Головин Василий Петрович
  • Крамер Ольга Леонидовна
  • Казаков Александр Михайлович
  • Пшеничная Маргарит Акобовна
RU2808556C1
Бета- и гамма-спектрометр 1979
  • Чуркин В.Н.
SU812093A1

Реферат патента 2019 года Способ определения функционального зазора между поверхностями трения-скольжения

Изобретение относится к области машиностроения, в частности к способам исследования функционального и морфологического состояния одиночных и многоопорных подшипников скольжения в двигателях внутреннего сгорания и трубопроводных систем путем измерения радиальных зазоров между поверхностями трения-скольжения. Способ определения функционального зазора между поверхностями трения-скольжения заключается в том, что измеряют толщину смазочного слоя в радиальных зазорах пар трения, при котором в смазочное масло вводят радиоактивные изотопы или радионуклиды, в количестве, достаточном для их регистрации. Заполняют зазоры между поверхностями трения-скольжения полученным смазочным маслом. Регистрируют датчиками для измерения радиоактивности прохождение радиоактивных частиц в не менее чем трех участках каждой исследуемой плоскости зазора и определяют толщину смазочного слоя, при полном заполнении зазора соответствующую величине радиального зазора пары трения. Технический результат: повышение точности определения величины радиальных зазоров в парах трения скольжения.

Формула изобретения RU 2 692 294 C1

Способ определения функционального зазора между поверхностями трения-скольжения, посредством измерения толщины смазочного слоя в радиальных зазорах пар трения, при котором в смазочное масло вводят радиоактивные изотопы или радионуклиды, в количестве, достаточном для их регистрации, заполняют зазоры между поверхностями трения-скольжения полученным смазочным маслом, регистрируют датчиками для измерения радиоактивности прохождение радиоактивных частиц в не менее чем трех участках каждой исследуемой плоскости зазора и определяют толщину смазочного слоя, при полном заполнении зазора соответствующую величине радиального зазора пары трения.

Документы, цитированные в отчете о поиске Патент 2019 года RU2692294C1

Способ определения толщины смазочного слоя между поверхностями трения 1987
  • Попов Алексей Павлович
  • Корчагин Юрий Владимирович
  • Кауфман Александр Ефимович
  • Нестеров Федор Владимирович
SU1564430A1
СПОСОБ СМАЗКИ УЗЛОВ ТРЕНИЯ 2006
  • Громаковский Дмитрий Григорьевич
  • Серов Игорь Юрьевич
  • Воробьев Роман Владимирович
  • Николаев Владимир Александрович
  • Хаустов Вячеслав Иванович
  • Данильченко Александр Иванович
  • Бошкарев Олег Васильевич
  • Гонченко Борис Васильевич
RU2334909C2
ПОДШИПНИКОВЫЙ УЗЕЛ СКОЛЬЖЕНИЯ 2004
  • Харламов Вадим Васильевич
  • Павлышко Сергей Венедиктович
RU2271484C1
JP H057015122 A, 26.01.1982.

RU 2 692 294 C1

Авторы

Санинский Владимир Андреевич

Кононович Мария Андреевна

Даты

2019-06-24Публикация

2018-09-03Подача