Способ получения оксида иттрия для керамических изделий Российский патент 2019 года по МПК C01F17/00 B82Y30/00 B22F9/16 

Описание патента на изобретение RU2702588C1

Изобретение относится к химической технологии и может быть использовано для получения наноразмерных порошков на основе оксида иттрия для производства оптической керамики, используемой, в частности, в качестве оптических сред, активируемых редкоземельными элементами (РЗЭ), инфракрасных смотровых окон высокотемпературных печей, а также для использования в каталитических процессах, где требуются катализаторы на основе носителей, сочетающих высокую поверхность с устойчивостью при повышенных температурах.

На данный момент существуют разные методы получения данных порошков.

Известен способ получения тонких порошков оксида иттрия основан на химическом осаждении карбоната иттрия [Noriko Saito, Shinichi Matsuda and Takayasu Ikegami «Fabrication of Transparent Yttria Ceramics at Low Temperature Using Carbonate-Derived Powder» J. Am. Ceramic Society, 81 2023-2028 (1998)]. в нем описывается способ получения нанопорошков оксида иттрия. Согласно указанному способу получили порошки оксида иттрия со средним размером частиц ~100 нм, которые были использованы для получения прозрачной керамики. Способ состоит в следующем: прекурсор оксида иттрия в форме карбоната иттрия получают методом прямого химического осаждения из водного раствора 0,5 М нитрата иттрия. В качестве осадителя используют водный раствор бикарбоната аммония с концентрацией 2,5 М NH4HCO3. Полученную суспензию осадка выдерживают в маточном растворе при комнатной температуре при перемешивании магнитной мешалкой в течение 2-х дней. Затем осадок отфильтровывают и промывают водным раствором сульфата аммония с концентрацией 0,05% масс. Отфильтрованный пласт диспергируют в ацетоне и вновь отфильтровывают. Для предотвращения процесса агломерации кристаллов карбоната иттрия проводят термообработку полученного продукта в сушильном шкафу при 100°С в течение одного дня.

Полученный данным методом продукт согласно рентгеноструктурному анализу относится к нормальному карбонату Y2(СО3)3⋅2Н2О и состоит из вытянутых кристаллов толщиной 30 нм и длиной 100-200 нм. Порошки оксида иттрия получают термообработкой прекурсора в кислородной среде в температурной области 700-1100°С с выдержкой при максимальной температуре в течение 4-х часов с последующим их измельчением в агатовой ступке и используют для изучения спекаемости материала. Порошок оксида иттрия, полученный термообработкой прекурсора при 1100°С, после измельчения характеризуется пониженной степенью агломерации с узким распределением размеров частиц округлой формы, размер которых колеблется в интервале ~70-100 нм, что по величине сравнимо с аналогичными характеристиками порошка оксида иттрия, полученных известными способами [Takayasu Ikegami, Toshiyuki Mori, Yoshiyuki Yajima, Satoshi Takenouchi, Toshihiko Misawa and Yusuke Moriyoshi ((Fabrication of Transparent Yttria Ceramics through the Synthesis of Yttrium Hydroxide at Low Temperature and Doping by Sulfate Ions» Journal of the Ceramic Society of Japan, 107,297-299 (1999); Takayasu Ikegami, Ji-Guang Li and Toshiyuki Mori ((Fabrication of Transparent Yttria Ceramics by the Low-Temperature Synthesis of Yttrium Hydroxide» J. Am. Ceramic Society, 85, 1725-1729(2002)]. Недостаток: для получения малоагрегированных порошков используются большое количество промежуточных стадий, в которых применяются реагенты, требующие дальнейшей утилизации и не являющиеся прекурсорами для получения оксида иттрия. Также для приведенного метода характерно получения оксида иттрия с малой удельной поверхностью.

Известен другой способ (патент RU 2194014, МПК С01А 17/00, опубл. 10.12.2002), согласно которому мелкодисперсный порошок оксида иттрия получают через осаждение карбоната иттрия смешиванием растворов азотно-кислого иттрия концентрацией 100-250 г/л по оксиду и углекислого аммония концентрацией 100-200 г/л при непрерывном перемешивании. После фильтрации карбонат иттрия сушат при t=20-30°C в течение 6-20 ч, прокаливают до оксида в кварцевой кювете при t=450-750°C. Полученный порошок оксида иттрия имеет средний размер зерна 0,0576 мкм.

Исходный раствор и раствор осадителя (NH4)2CO3 сливают одновременно при непрерывном перемешивании. Прокалку карбоната иттрия проводят при 450°С, полученный оксид иттрия имеет средний размер зерна 0,015-0,020 мкм. Средний размер зерна оксида иттрия определяли через удельную поверхность порошка, измеренную методом. Недостаток: для получения малоагрегированных порошков используются большое количество промежуточных стадий, в которых применяются реагенты, требующие дальнейшей утилизации и не являющиеся прекурсорами для получения оксида иттрия. Также для приведенных методов характерно получения оксида иттрия с малой удельной поверхностью.

Из уровня техники известен способ получения оксида иттрия, согласно которому порошок оксида иттрия получают термообработкой осажденного гидроксида иттрия при температуре 800-1200°С. [Takayasu Ikegami, Toshiyuki Mori, Yoshiyuki Yajima, Satoshi Takenouchi, Toshihiko Misawa and Yusuke Moriyoshi ((Fabrication of Transparent Yttria Ceramics through the Synthesis of Yttrium Hydroxide at Low Temperature and Doping by Sulfate Ions» Journal of the Ceramic Society of Japan, 107, 297-299 (1999)]. Данный метод выбран в качестве прототипа. Порошки отличаются повышенной степенью агломерации. Поэтому порошки, полученные данным методом, предварительно измельчали в корундовой ступке как на стадии получения прекурсора оксида иттрия, так и после его термообработки. Удельная поверхность таких порошков Y2O3 в зависимости от температуры прокаливания исходного гидроксида иттрия изменяется от 39 м 2/г после термообработки при 800°С до 6-9 м2/г после термообработки при температуре 1200°С. Порошки, прокаленные при 1100°С, характеризуются величиной удельной поверхности 10-16 м2/г и средним размером частиц до 100 нм, которые образуют более крупные конгломераты частиц. Недостаток: в предлагаемом способе для улучшения характеристик порошков оксида иттрия, а именно для получения дисперсных малоагрегированных порошков с развитой поверхностью, пригодных для изготовления прозрачной керамики, используется операция измельчения. Однако активация тугоплавких оксидных порошков с помощью механического помола обычно ограничивается процессами вторичной агрегации измельчаемого материала с уменьшением его поверхности.

Поиск способов полного количественного осаждения малорастворимых или нерастворимых соединений иттрия, из которых в процессе термообработки формируются нанопорошки оксида иттрия с высокой удельной поверхностью, являются актуальным.

Техническая задача настоящего изобретения направлена на получение наноструктурированного оксида иттрия с высокой удельной поверхностью и узким распределением по размерам наночастиц.

Техническая задача достигается тем, что способ получения оксида иттрия для керамических изделий осуществляют гидролизом сульфата иттрия с использованием в качестве гидролитического агента гидроксида натрия или водного раствора аммиака при равномерном его введении в течении 1 часа до доведения интервала конечных значений рН 8-10, затем осуществляют центрифугирование полученного геля на скорости 10000 об/мин и вакуумную сушку при температуре 60°С. Предложенный способ относится к золь-гель методу. Данный способ позволяет эффективно управлять структурообразованием материалов и является одним из наименее энергозатратных.

Сущность предложенного способа поясняется следующими примерами (таблица -поверхностные свойства образцов).

Проведен гидролиз сульфата иттрия с помощью гидроксида натрия или водного раствор аммиака. Раствор доводился до конечных значений рН равному 8-10. Время введения гидролитического агента составляло 1 час (гидролитический агент вводился равномерно с помощью насоса). Полученный гель центрифугировали на скорости 10000 об/мин. Высушивали в вакуумном шкафу при температуре 60°С.

Физико-химические особенности полученных продуктов гидролиза исследовали с помощью термического анализа, совмещенного с масс-спектрометрией газообразных продуктов термолиза, рентгенофазового анализа, сканирующей электронной микроскопии, низкотемпературной адсорбции азота.

Сканирующая электронная микроскопия показывает, что образцы состоят из наноструктурированных частиц и имеют узкое распределение по размерам (таблица).

Термический анализ показал, что образцы кристаллизуются при температуре 680-690°С. Образуется кубический оксид иттрия, сохраняющий нанометровые размеры. Данный оксид иттрия свободен от примесей солей. Анализ литературных данных показывает, что ранее такие образцы не были получены золь-гель методом.

При таком методе получении формируются частицы с небольшим разбросом размеров и формы. Образцы, полученные с помощью водного раствора аммиака, в качестве прекурсора, имеют высокую удельную поверхность.

Также был проведен синтез образцов с доведением до рН 7, полученный результат - гель не формируется.

При рН выше 10 свойства полученных образцов различаются в пределах погрешности.

Похожие патенты RU2702588C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ОКСИДА ИТТРИЯ 2006
  • Тельнова Галина Борисовна
  • Поликанова Александра Станиславовна
  • Солнцев Константин Александрович
RU2354610C2
Способ уменьшения размеров частиц и степени агломерации на стадии синтеза исходных прекурсоров при получении алюмоиттриевого граната 2018
  • Голота Анатолий Федорович
  • Тарала Виталий Алексеевич
  • Чикулина Ирина Сергеевна
  • Малявин Федор Федорович
  • Шама Марина Сергеевна
RU2700074C1
Полупроводниковый наноструктурированный керамический материал 2021
  • Рабаданов Муртазали Хулатаевич
  • Гаджимагомедов Султанахмед Ханахмедович
  • Палчаев Даир Каирович
  • Мурлиева Жарият Хаджиевна
  • Эмиров Руслан Мурадович
  • Рабаданова Аида Энверовна
  • Алиханов Нариман Магомед-Расулович
  • Сайпулаев Пайзула Магомедтагирович
  • Гаджиев Махач Хайрудинович
  • Шапиев Гусейн Шапиевич
RU2761338C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНАТОВЫХ ВОЛОКОН, МОДИФИЦИРОВАННЫХ ХРОМОМ 2021
  • Щербакова Галина Игоревна
  • Абрамов Олег Николаевич
  • Шаухин Максим Константинович
  • Кривцова Наталья Сергеевна
  • Варфоломеев Максим Сергеевич
  • Стороженко Павел Аркадьевич
RU2767236C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНОГО АЛЮМИНАТА МАГНИЯ 2011
  • Исупов Виталий Петрович
  • Хуснутдинов Вячеслав Рамильевич
  • Аввакумов Евгений Григорьевич
  • Винокурова Ольга Борисовна
RU2457181C1
Изготовление градиентного керамического материала на основе YBCO с использованием плазменной обработки 2022
  • Амашаев Рустам Русланович
  • Гаджимагомедов Султанахмед Ханахмедович
  • Рабаданов Муртазали Хулатаевич
  • Рабаданова Аида Энверовна
  • Палчаев Даир Каирович
  • Гаджиев Махач Хайрудинович
  • Мурлиева Жарият Хаджиевна
  • Рагимханов Гаджимирза Балагланович
  • Шабанов Наби Сайдуллахович
  • Фараджев Шамиль Пиралиевич
  • Сайпулаев Пайзула Магомедтагирович
RU2795949C1
Способ получения керамических композитов на основе ортофосфата лантана 2022
  • Мезенцева Лариса Петровна
  • Осипов Александр Владимирович
  • Масленникова Татьяна Петровна
  • Кручинина Ирина Юрьевна
  • Любимцев Александр Сергеевич
  • Акатов Андрей Андреевич
RU2791913C1
СПОСОБ ПОЛУЧЕНИЯ ДВОЙНОГО СИЛИКАТА NaYSiO 2023
  • Белобелецкая Маргарита Витальевна
  • Стеблевская Надежда Ивановна
  • Медков Михаил Азарьевич
RU2819643C1
Способ получения циркона 2021
  • Меркулов Олег Владимирович
RU2776575C1
Способ получения порошков фаз твёрдых растворов системы 0,75BiFeO-0,25Ba(ZrTi)O, легированных соединениями марганца 2022
  • Нестеров Алексей Анатольевич
  • Панич Александр Анатольевич
  • Толстунов Михаил Игоревич
  • Казакова Арина Владимировна
RU2787492C1

Реферат патента 2019 года Способ получения оксида иттрия для керамических изделий

Изобретение относится к химической технологии и может быть использовано для получения наноразмерных порошков на основе оксида иттрия для производства оптической керамики. Способ получения оксида иттрия для керамических изделий включает гидролиз сульфата иттрия с использованием в качестве гидролитического агента гидроксида натрия или водного раствора аммиака при равномерном его введении в течение 1 ч до достижения конечных значений рН 8-10. Затем осуществляют центрифугирование полученного геля на скорости 10000 об/мин и вакуумную сушку при температуре 60°С. Изобретение позволяет получить наноструктурированный оксид иттрия с высокой удельной поверхностью и узким распределением наночастиц по размерам. 1 табл.

Формула изобретения RU 2 702 588 C1

Способ получения оксида иттрия для керамических изделий, характеризующийся тем, что осуществляют гидролиз сульфата иттрия с использованием в качестве гидролитического агента гидроксида натрия или водного раствора аммиака при равномерном его введении в течение 1 часа до доведения интервала конечных значений рН 8-10, затем осуществляют центрифугирование полученного геля на скорости 10000 об/мин и вакуумную сушку при температуре 60°С.

Документы, цитированные в отчете о поиске Патент 2019 года RU2702588C1

ТРУНОВА В.В., АВДИН В.В
Анализ продуктов гидролиза сульфата иттрия золь-гель методом с различными гидролитическими агентами, Вестник ЮУрГУ, Серия "Химия", 2016, т
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Деревянный торцевой шкив 1922
  • Красин Г.Б.
SU70A1
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ОКСИДА ИТТРИЯ 2006
  • Тельнова Галина Борисовна
  • Поликанова Александра Станиславовна
  • Солнцев Константин Александрович
RU2354610C2
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОДИСПЕРСНОГО ПОРОШКА ОКСИДА ИТТРИЯ 2001
  • Горячева Е.Г.
  • Вдовина Л.В.
  • Карманников В.П.
RU2194014C1
CN 102531023 A, 04.07.2012
CN 102070178 A, 25.05.2011
TAKAYASU IKEGAMI et al., Fabrication of Transparent Yttria Ceramics through the Synthesis of Yttrium Hydroxide at Low Temperature and Doping by Sulfate Ions, Journal of the Ceramic Society of Japan, 1999, v
Счетный сектор 1919
  • Ривош О.А.
SU107A1
АВТОМАТИЧЕСКОЕ УСТРОЙСТВО ДЛЯ ПОДАЧИ УГЛЯ К ТОПКАМ 1920
  • Палько Г.И.
SU297A1

RU 2 702 588 C1

Авторы

Полозова Валерия Владимировна

Буланова Александра Владимировна

Авдин Вячеслав Викторович

Полозов Максим Александрович

Даты

2019-10-08Публикация

2019-06-14Подача