Способ получения палладиевого катализатора на основе оксида алюминия Российский патент 2020 года по МПК B01J21/04 B01J23/44 B01J37/02 B01J37/16 B01J20/08 

Описание патента на изобретение RU2712593C1

Изобретение относится к области сорбционной техники, в частности, разработки катализаторов для низкотемпературного окисления оксида углерода, и может быть использовано в средствах индивидуальной и коллективной защиты органов дыхания и также защиты окружающей среды.

Известен способ получения катализатора, содержащего пористый носитель и осажденный на нем каталитически активный металл, включающий предварительную стадию активации пористого носителя раствором сенсибилизатора, затем обработку активированного носителя раствором соли каталитически активного металла, выбранного из никеля, палладия, платины, родия, рутения, золота, серебра или их смесей, и стадию восстановления для достижения химического осаждения на нем каталитически активного металла (см. Патент RU №2150322 С1 от 30.04.1998 г., кл. B01J 37/02, 23/38, С01В 15/023, 15/029).

Недостатком известного способа является высокая энергоемкость и дороговизна получаемого катализатора.

Наиболее близким к заявленному по технической сущности и количеству совпадающих признаков является способ получения палладиевого катализатора на активном оксиде алюминия для окисления оксида углерода, включающий приготовление пропиточного раствора путем растворения хлористого палладия в воде, пропитку носителя этим раствором, восстановление палладия формиатом натрия, отмывку водой пропитанного носителя до отрицательной реакции на хлор-ион и последующую сушку, причем для осуществления возможности окисления оксида углерода при начальной его концентрации до 100 ПДК включительно при конверсии оксида углерода не менее 95% в течение не менее 8 ч, пропитку носителя ведут одновременным погружением всех его частиц в пропиточный раствор с температурой 70-90°С, содержащий 1,5-1,75% палладия, при отношении объема раствора к объему носителя в пределах (1,15÷1,30):1, а перед пропиткой носитель нагревают до температуры пропиточного раствора (70-90°С) (Патент RU №2531621, 2014).

Недостатком прототипа является высокий расход драгоценного металла - палладия, а также низкая эффективность окисления оксида углерода при его низкой концентрации (<5 мг/м3) и при низких температурах (16-22°С).

Техническим результатом (целью изобретения) является получение катализатора окисления оксида углерода, обладающего повышенной эффективностью при низких концентрациях в области комнатных температур.

Поставленная цель достигается предлагаемым способом, включающим приготовление подкисленного водного раствора хлорида палладия, пропитку оксида алюминия приготовленным раствором при 70-90°С и объемном соотношении пропиточного раствора к оксиду алюминия (1,15÷1,30):1,00, обработку пульпы 10% раствором формиата натрия до восстановления палладия, отмывку продукта от хлор-ионов и последующую сушку, причем пропитку ведут раствором хлорида палладия с концентрацией 1,0-1,1% масс., а после отмывки от хлор-ионов промытый продукт выдерживают при температуре 18-25°С в течение 3,0-3,5 часов и термообрабатывают при подъеме температуры со скоростью 18-20°С/мин до 105-110°С.

Отличие предлагаемого изобретения от прототипа состоит в том, что пропитку ведут раствором хлорида палладия с концентрацией 1,0-1,1% масс., а после отмывки от хлор-ионов промытый продукт выдерживают при температуре 18-25°С в течение 3,0-3,5 часов и термообрабатывают при подъеме температуры со скоростью 18-20°С/мин до 105-110°С.

Из научно-технической и патентной литературы авторам не известен способ получения палладиевого катализатора на активном оксиде алюминия, в котором пропитку ведут раствором хлорида палладия с концентрацией 1,0-1,1% масс., а после отмывки от хлор-ионов промытый продукт выдерживают при температуре 18-25°С в течение 3,0-3,5 часов и термообрабатывают при подъеме температуры со скоростью 18-20°С/мин до 105-110°С.

Эффективность палладиевых катализаторов в окислении оксида углерода до нетоксичного диоксида углерода в огромной степени зависит от распределения металлического палладия на поверхности пор активного оксида алюминия, составляющую 200-300 м2/г.

Снижение концентрации может позволить более равномерно распределить палладий на поверхности и объеме пор основы, причем снижение «пика» кристаллов палладия на поверхности основы может повысить каталитическую активность по оксиду углерода за счет более удачных столкновений контактирующих молекул СО и О2. С другой стороны, применение более интенсивных скоростей нагрева на стадии термообработки продукта позволяет более прочно закрепить металл на поверхности Al2O3, что также положительно сказывается на процессе окисления оксида углерода при низких температурах.

Однако оптимальные режимы достижения поставленной цели могут быть определены только экспериментально.

Предлагаемый способ осуществляется следующим образом. Готовят пропиточный раствор путем растворения хлорида палладия в воде до концентрации его в растворе 1,0-1,1% масс., и пропитывают им основу одновременным погружением всех ее частиц в пропиточный раствор с температурой 70-90°С, причем соотношение объема пропиточного раствора и объема основы берут в пределах (1,15-1,30):1,00. Затем палладий восстанавливают формиатом натрия при его концентрации 10% масс., после чего отмывают продукт от хлор-иона и осуществляют выдержку обработанного продукта в течение 3,0-3,5 часа при температуре 18-25°С, а затем подвергают сушке до влажности не более 5% и термообрабатывают при подъеме температуры с скоростью 18-20°С/мин до температуры 105-110°С.

Сравнительную оценку катализаторов по эффективности окисления оксида углерода проводили на динамической термостатированной установке в четырех проточных цилиндрических стеклянных реакторах диаметром 20 мм в достаточно жестких (неблагоприятных) условиях: при минимально допустимой толщине слоя катализатора 30 мм и максимально возможной линейной скорости газовоздушного потока 20 см/с. Как правило, при разработке фильтров (устройств) для очистки воздуха от оксида углерода толщина слоя катализатора принимается более 30 мм, а линейная скорость газовоздушного потока - на уровне или менее 20 см/с.

Начальная концентрация оксида углерода в газовоздушной смеси составляла при испытаниях от 90 до 110 мг/м3; температура окружающей среды и газовоздушного потока от 20 до 22°С; относительная влажность газовоздушной смеси от 70 до 80%; продолжительность испытаний 8 ч.

Начальную, Сн, мг/м3, и выходную, Св, мг/м3, концентрации оксида углерода определяли газохроматографическим методом с чувствительностью 0,05 мг/м3⋅мм.

Эффективность окисления оксида углерода, Э, %, оценивали как долю окисленного оксида углерода, выраженную в процентах от начальной концентрации, и к концу каждого часа вычисляли по формуле

Э=(Снв)/Сн⋅100%.

Конечное численное значение величины эффективности определяли как среднее арифметическое из полученных значений за 8 часов испытаний.

Полученный по данному способу палладиевый катализатор низкотемпературного окисления оксида углерода имел эффективность 98-99%.

Следующие примеры поясняют сущность изобретения.

Пример 1. В 31 л воды вносится 300 г хлорида палладия, 100 мл соляной кислоты и раствор нагревают до 70-90°С, причем выдерживают объемное соотношение пропиточного раствора к оксиду алюминия (1,15÷1,30):1. В течение часа происходит полное растворение хлорида палладия с некоторым выкипанием воды. В конечный объем 30 л (концентрация хлорида палладия 1,0% масс.) высыпают 25 л основы. Пульпа выдерживается 4 часа, затем охлаждается до 60°С, и в нее выливаются заранее приготовленные 30 л раствора, содержащего 3,0 кг формиата натрия (концентрация раствора 10% масс.). Восстановление ведется 1,0-1,5 часа.

Полученные частицы отмываются дистиллированной водой до отрицательной реакции на хлор-ион и осуществляют выдержку обработанного продукта в течение 3,5 часа при температуре 25°С, а затем высушивают до влажности не более 5% и термообработку проводят при 110°С со скоростью подъема температуры 20°С/мин.

Полученный катализатор имел эффективность 98%.

Пример 2. Аналогично примеру 1, кроме того, что в 31 л воды вносится 335 г хлорида палладия (концентрация хлорида палладия 1,1% масс.), а выдержку обработанного продукта осуществляют в течение 3,0 часов при температуре 18°С и термообработку проводят при 105°С со скоростью подъема температуры 18°С/мин.

Полученный катализатор имел эффективность 97%.

Пример 3. Аналогично примеру 1, кроме того, что в 31 л воды вносится 320 г хлорида палладия (концентрация хлорида палладия 1,06% масс.), а выдержку обработанного продукта осуществляют в течение 3,2 часа при температуре 21°С и термообработку проводят при 110°С со скоростью подъема температуры 19°С/мин.

Полученный катализатор имел эффективность 99%.

Эффективность низкотемпературного окисления оксида углерода палладиевым катализатором на основе активного оксида алюминия, полученного по прототипу (Патент RU №2531621) составляла 94-96%.

В результате отработки заявленного способа изобретения было установлено, что, если концентрация хлорида палладия ниже 1,0%, снижается количество активных каталитических центров палладия, а, если концентрация хлорида палладия выше 1,1%, идет блокировка объема микро- и мезопор основы, которые повышают количество удачных соударений реагирующих молекул.

Относительно времени выдержки обработанного продукта было показано, что при времени выдержки менее 3,0 часа не удается равномерно распределить каталитические комплексы палладия по поверхности основы, а увеличение времени выдержки более 3,5 часа экономически нецелесообразно.

Относительно температуры выдержки отмытого от хлор-иона продукта показано, что при температуре ниже 18°С формование каталитически активного палладия замедляется, а при температуре выше 25°С идет дезактивация каталитического комплекса.

Относительно температуры термообработки установлено, что при ее увеличении выше 110°С идет реструктуризация каталитического комплекса и снижение его активности, а при температуре ниже 105°С значительно возрастает время термообработки.

Скорость подъема температуры на стадии термообработки выше 20°С/мин приводит к частичной дезактивации каталитической активности палладия, а при скорости ниже 18°С/мин ухудшаются условия формирования самого каталитического комплекса, что в обоих случаях снижает эффективность катализатора.

Таким образом, из вышеизложенного следует, что каждый из признаков заявленной совокупности в большей или меньшей степени влияет на достижение поставленной цели, а вся совокупность является достаточной для характеристики заявленного технического решения.

Похожие патенты RU2712593C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПАЛЛАДИЕВОГО КАТАЛИЗАТОРА НА НОСИТЕЛЕ АКТИВНОМ ОКСИДЕ АЛЮМИНИЯ ДЛЯ НИЗКОТЕМПЕРАТУРНОГО ОКИСЛЕНИЯ МОНООКСИДА УГЛЕРОДА 2019
  • Нечаев Антон Владимирович
  • Степанов Роман Михайлович
  • Шевченко Александр Онуфриевич
  • Ракова Марина Александровна
  • Першикова Елена Владимировна
RU2729190C1
СПОСОБ ПОЛУЧЕНИЯ ПАЛЛАДИЕВОГО КАТАЛИЗАТОРА НА НОСИТЕЛЕ - ОКСИДЕ АЛЮМИНИЯ - ДЛЯ НИЗКОТЕМПЕРАТУРНОГО ОКИСЛЕНИЯ ОКСИДА УГЛЕРОДА 2013
  • Гарцман Израиль Иосифович
  • Каменер Олег Евгеньевич
  • Соловьев Сергей Николаевич
  • Паршенков Михаил Владимирович
RU2531621C1
СПОСОБ ПОЛУЧЕНИЯ ПАЛЛАДИЕВОГО КАТАЛИЗАТОРА НА АКТИВНОМ ОКСИДЕ АЛЮМИНИЯ ДЛЯ НИЗКОТЕМПЕРАТУРНОГО ОКИСЛЕНИЯ ОКСИДА УГЛЕРОДА 2007
  • Макляев Владимир Петрович
  • Антонова Наталья Михайловна
  • Пащенко Галина Петровна
  • Чебыкин Валентин Васильевич
  • Дзисяк Анатолий Петрович
  • Глазунова Лариса Дмитриевна
  • Тихомиров Евгений Владимирович
  • Кордиалик Всеволод Владиславович
  • Гарцман Израиль Иосифович
RU2339446C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА-КАТАЛИЗАТОРА 2009
  • Мухин Виктор Михайлович
  • Чебыкин Валентин Васильевич
  • Тарасов Александр Валентинович
  • Соловьев Сергей Николаевич
  • Зубова Инна Дмитриевна
  • Гарцман Израиль Иосифович
  • Зубова Ирина Николаевна
RU2401696C1
СПОСОБ ПРИГОТОВЛЕНИЯ МОНО- И БИМЕТАЛЛИЧЕСКОГО КАТАЛИЗАТОРА И ПРОЦЕССЫ С УЧАСТИЕМ КИСЛОРОДА И/ИЛИ ВОДОРОДА 2006
  • Охлопкова Людмила Борисовна
  • Лисицын Александр Сергеевич
RU2316394C1
Способ получения палладиевого катализатора на активированном угле для низкотемпературного окисления водорода и оксида углерода 1991
  • Федоров Николай Федорович
  • Ивахнюк Григорий Константинович
  • Кукушкин Юрий Николаевич
  • Андронов Евгений Алексеевич
  • Померанцева Лидия Алексеевна
  • Бабкин Олег Эдуардович
  • Хроменкова Зоя Александровна
SU1796243A1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОПАЛЛАДИЕВОГО КАТАЛИЗАТОРА 2001
  • Пчелякова Л.Е.
  • Савостин Ю.А.
  • Гасенко О.А.
  • Ерофеева О.А.
RU2199392C1
СПОСОБ ПОЛУЧЕНИЯ ВИНИЛАЦЕТАТА 1997
  • Коувз Джон Уильям
  • Китчин Саймон Джеймс
RU2197472C2
СПОСОБ ПРИГОТОВЛЕНИЯ НАНЕСЕННЫХ ПАЛЛАДИЕВЫХ КАТАЛИЗАТОРОВ 2004
  • Цырульников Павел Григорьевич
  • Шитова Нина Борисовна
  • Афонасенко Татьяна Николаевна
RU2282498C2
СПОСОБ ПОЛУЧЕНИЯ ПАЛЛАДИЙСОДЕРЖАЩЕГО КАТАЛИЗАТОРА ДЛЯ ПРОЦЕССА ВОССТАНОВЛЕНИЯ ОКСИДОВ АЗОТА В ОТХОДЯЩИХ ГАЗАХ 1994
  • Туркова Т.В.
  • Кипнис М.А.
  • Шашков А.Ю.
  • Мотова О.Н.
  • Павелко В.З.
  • Фирсов О.П.
  • Шустов В.А.
RU2072260C1

Реферат патента 2020 года Способ получения палладиевого катализатора на основе оксида алюминия

Изобретение относится к разработке катализаторов для низкотемпературного окисления оксида углерода и может быть использовано в средствах индивидуальной и коллективной защиты органов дыхания и также защиты окружающей среды. Предложен способ получения палладиевого катализатора на основе оксида алюминия. Осуществляют приготовление подкисленного водного раствора хлорида палладия и пропитку оксида алюминия приготовленным раствором при объемном соотношении пропиточного раствора к оксиду алюминия (1,15÷1,30):1,00. Пропитку ведут раствором хлорида палладия с концентрацией 1,0-1,1 мас.%. Затем производят обработку полученной пульпы 10%-ным раствором формиата натрия до восстановления палладия, отмывку продукта от хлор-ионов, выдержку при температуре 18-25°С в течение 3,0-3,5 ч и термообработку при подъеме температуры со скоростью 18-20°С/мин до 105-110°С. Изобретение позволяет получить низкотемпературный катализатор для окисления оксида углерода, имеющий эффективность окисления 97-99%.

Формула изобретения RU 2 712 593 C1

Способ получения палладиевого катализатора на основе оксида алюминия, включающий приготовление подкисленного водного раствора хлорида палладия, пропитку оксида алюминия приготовленным раствором при 70-90°С и объемном соотношении пропиточного раствора к оксиду алюминия (1,15÷1,30):1,00, обработку пульпы 10%-ным раствором формиата натрия до восстановления палладия, отмывку продукта от хлор-ионов и последующую сушку, отличающийся тем, что пропитку ведут раствором хлорида палладия с концентрацией 1,0-1,1% мас., а после отмывки от хлор-ионов промытый продукт выдерживают при температуре 18-25°С в течение 3,0-3,5 ч и термообрабатывают при подъеме температуры со скоростью 18-20°С/мин до 105-110°С.

Документы, цитированные в отчете о поиске Патент 2020 года RU2712593C1

СПОСОБ ПОЛУЧЕНИЯ ПАЛЛАДИЕВОГО КАТАЛИЗАТОРА НА НОСИТЕЛЕ - ОКСИДЕ АЛЮМИНИЯ - ДЛЯ НИЗКОТЕМПЕРАТУРНОГО ОКИСЛЕНИЯ ОКСИДА УГЛЕРОДА 2013
  • Гарцман Израиль Иосифович
  • Каменер Олег Евгеньевич
  • Соловьев Сергей Николаевич
  • Паршенков Михаил Владимирович
RU2531621C1
СПОСОБ ПОЛУЧЕНИЯ ПАЛЛАДИЕВОГО КАТАЛИЗАТОРА НА АКТИВНОМ ОКСИДЕ АЛЮМИНИЯ ДЛЯ НИЗКОТЕМПЕРАТУРНОГО ОКИСЛЕНИЯ ОКСИДА УГЛЕРОДА 2007
  • Макляев Владимир Петрович
  • Антонова Наталья Михайловна
  • Пащенко Галина Петровна
  • Чебыкин Валентин Васильевич
  • Дзисяк Анатолий Петрович
  • Глазунова Лариса Дмитриевна
  • Тихомиров Евгений Владимирович
  • Кордиалик Всеволод Владиславович
  • Гарцман Израиль Иосифович
RU2339446C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ОКИСЛЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И ОКСИДА УГЛЕРОДА 1993
  • Туркова Т.В.
  • Мотова О.Н.
  • Кипнис М.А.
RU2046654C1
СПОСОБ ПОЛУЧЕНИЯ ВИНИЛАЦЕТАТА 1997
  • Коувз Джон Уильям
  • Китчин Саймон Джеймс
RU2197472C2
СПОСОБ ПРИГОТОВЛЕНИЯ АЛЮМОПЛАТИНОВОГО КАТАЛИЗАТОРА ДЛЯ ОБЕЗВРЕЖИВАНИЯ ВЫБРОСНЫХ ГАЗОВ ОТ ОРГАНИЧЕСКИХ ВЕЩЕСТВ, МОНООКСИДА УГЛЕРОДА И ОКСИДОВ АЗОТА 1990
  • Дроздов В.А.
  • Цырульников П.Г.
  • Кудря Е.Н.
  • Бубнов А.В.
  • Качуровский Ю.А.
  • Аликина Г.М.
  • Вязков В.А.
  • Милюткин В.С.
RU2026738C1

RU 2 712 593 C1

Авторы

Гарцман Иосиф Израилевич

Мухин Виктор Михайлович

Куликов Николай Константинович

Кордиалик Всеволод Владиславович

Даты

2020-01-29Публикация

2019-03-15Подача