СПОСОБ КОМПЕНСАЦИИ ПОТЕРИ ТЯГИ ДВИГАТЕЛЯМИ ОРИЕНТАЦИИ РАЗГОННОГО БЛОКА Российский патент 2020 года по МПК B64G1/24 

Описание патента на изобретение RU2739645C1

Изобретение относится к ракетно-космической технике, а именно к способам управления движением разгонных блоков (РБ) на жидком топливе, обеспечивающих переход с опорной орбиты, полученной с помощью ракеты-носителя, на целевую орбиту космического аппарата (КА).

В изобретении решаются задачи диагностики отказов двигателей ориентации и компенсации отказавших двигателей.

В космической технике известен алгоритм диагностики отказов двигателей ориентации МКС, принятый за отдаленный аналог, при котором используются дополнительные резервные двигатели ориентации (см. [1]). Алгоритм диагностики отказов исключает ложные отказы вызываемые упругими колебаниями конструкции. Недостатком прототипа является то, что он не обеспечивает управление РБ при выходе из строя всех штатных двигателей ориентации в одном из каналов тангажа или рысканья.

Задачей изобретения является обеспечение ориентации разгонного блока при выходе из строя всех штатных двигателей ориентации в одном из каналов тангажа или рысканья путем использования двигателей ориентации в канале крена.

Указа иная задача выполняется за счет того, что в способе компенсации потери тяги двигателями ориентации разгонного блока, заключающемся в том, что используют алгоритм диагностики отказов двигателей ориентации и при критической потере тяги двигателями ориентации в канале тангажа или рысканья используют двигатели ориентации в канале крена, при этом, в алгоритме диагностики отказов определяют номинальный момент М, создаваемый двигателем, измеряют угловую скорость разгонного блока, на основании которой определяют корректировку момента р, создаваемого двигателем, ее математическое ожидание <р> и ее дисперсию D(p); выбирают постоянную времени апериодического звена, посредством которого исключают ложную идентификации отказа двигателей; выбирают признак критической потери тяги двигателями: М+<р> < М/3 и D(p) < М2/25.

На рис. 1 и 2 представлена схема расположения двигателей малой тяги (ДМТ) (двигателей ориентации), обеспечивающих угловую стабилизацию РБ «Фрегат». ДМТ 1, 3 и 2, 4 относятся к каналу крена, ДМТ 5, 7 и 6, 8 относятся к каналу тангажа, ДМТ 10, 12 и 9, 11 относятся к каналу рысканья. Можно видеть, что в случае, если продольные координаты центра масс РБ и плоскости расположения ДМТ 1÷4 различны, то управляющие двигатели канала крена ДМТ 1÷4 имеют плечо для стабилизации по тангажу и рысканью. Величина плеча зависит от массы топлива и полезной нагрузки и меняется при разных полезных нагрузках и в ходе полета из-за расхода топлива. Если центр масс РБ расположен выше плоскости расположения ДМТ 1÷4 (Хцм > Хдв), то например, для парирования полного отказа ДМТ 5, 7 можно использовать ДМТ 3, 4. Аналогично, отказ ДМТ 6, 8 может парироваться работой ДМТ 1, 2; отказ ДМТ 9, 11 может парироваться работой ДМТ 1, 2 и отказ ДМТ 10, 12 - работой ДМТ 3, 4.

Такое включение не создает момента по вращению, но при создании момента по тангажу одновременно создается момент и по рысканью. Ненужный момент компенсируется соответствующими двигателями угловой стабилизации.

Ориентация и стабилизация углового положения РБ на пассивных участках полета, осуществляется при помощи импульсных включений двигателей ориентации, при этом тягу двигателей можно считать постоянной. При осуществлении стабилизации важно обеспечить нахождение отклонений по углу ориентации внутри заданного коридора и ограничения на максимальную скорость разворота. Как показано в работах [2][3] для оптимизации управления по быстродействию применяется алгоритм, основанный на поверхности переключения. Для построения алгоритма стабилизации рассмотрим поведение объекта в фазовом пространстве, где ϕ - угол разворота, ω - скорость разворота. При постоянном управляющем моменте М траектория объекта в фазовом пространстве описывается параболой:

ϕ(ω)=ω2/(2⋅М)+ϕо,

Исходя из соотношения была построена поверхность переключения, показанная на рис. 3.

При угловой скорости превышающей значение, заданное линией 1, включается двигатель, дающий отрицательный импульс, при угловой скорости меньше значения, заданного линией 2, включается двигатель дающий положительный импульс. Вертикальными линиями обозначен коридор допустимых значений по углу рассогласования. Граница поверхности переключения состоит из парабол и прямых на разных участках в зависимости от момента, создаваемого двигателями вдоль соответствующей оси вращения.

Рассмотрим метод идентификации отказа ДМТ. Для этого будем оценивать тягу ДМТ.

Для определения тяги двигателей ориентации использовался фильтр Калмана с коэффициентами К, вычисленными на персональном компьютере для номера такта n→∞, т.е. не зависящими от n. Согласно методике использования фильтра Калмана, имеем (n- номер такта):

Здесь - предсказанный вектор состояния, а - скорректированный по результатам измерения Yn вектор где ωn - оцениваемая угловая скорость, рn - корректировка момента, создаваемого двигателем; А - матрица вида В и С - вектора вида , М - управляющий момент, ΔT - длительность такта, измерение Yn есть определенная на борту угловая скорость РБ, un-1 - управляющее воздействие на n-1 такте (признак включения двигателя), вектор коэффициентов был вычислен на персональном компьютере заранее, он зависит от ΔТ=0,065536 с.

В случае работы двигателя, величина М+рn является оценкой реального момента создаваемого двигателем на n-ом такте. Поскольку при переключении двигателей происходят переходные процессы, при которых значение М+рn может сильно отличаться от реального момента, создаваемого двигателем, оценивалась дисперсия величины рn. Для оценки дисперсии вычислялось взвешенное математическое ожидание <р> и взвешенная дисперсия D(p) на n-ом такте величины р и по формулам:

где величина, меньшая единицы, где Т - постоянная времени апериодического звена фильтрующего <р> и D(p); Т выбирается из соображений исключения ложной идентификации отказа ДМТ.

получим соотношения:

Используя эти соотношения был выбран следующий признак критической потери тяги двигателями ориентации (n→∞):

М+<р> < М/3 и D(p) < M2/25

Таким образом, заявлен способ компенсации потери тяги двигателями ориентации разгонного блока, заключающийся в том, что используют алгоритм диагностики отказов двигателей ориентации и при критической потере тяги двигателями ориентации в канале тангажа или рысканья используют двигатели ориентации в канале крена, при этом, в алгоритме диагностики отказов определяют номинальный момент М, создаваемый двигателем, измеряют угловую скорость разгонного блока, на основании которой определяют корректировку момента р, создаваемого двигателем, ее математическое ожидание <р> и ее дисперсию D(p); выбирают постоянную времени апериодического звена, посредством которого исключают ложную идентификации отказа двигателей; выбирают признак критической потери тяги двигателями: М+<р> < М/3 и D(p) < М2/25.

Техническим результатом изобретения является обеспечение ориентации разгонного блока при выходе из строя всех штатных двигателей ориентации в одном из каналов тангажа или рысканья путем использования двигателей ориентации в канале крена.

Источники информации:

1. А.В. Жирнов, С.Н. Тимаков. Алгоритм диагностики отказов двигателей ориентации МКС на основе самонастраивающейся бортовой модели динамики углового движения. М.: Вестник МГТУ им. Н.Э. Баумана серия "Приборостроение", 2016 г.,

2. Б.В. Раушенбах, Е.Н. Токарь. Управление ориентацией космических аппаратов. М.: «Наука», 1974 г., стр. 191-194.

3. К.С. Колесников. Динамика ракет. М.: «Машиностроение», 2003 г.

Похожие патенты RU2739645C1

название год авторы номер документа
СИСТЕМА УПРАВЛЕНИЯ ВЕКТОРОМ ТЯГИ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2015
  • Губертов Арнольд Михайлович
  • Миронов Вадим Всеволодович
  • Мосолов Сергей Владимирович
  • Ульянова Марина Викторовна
  • Давыденко Николай Андреевич
RU2594844C1
СИСТЕМА СТАБИЛИЗАЦИИ КОСМИЧЕСКОГО АППАРАТА 2014
  • Асюшкин Владимир Андреевич
  • Дишель Валерий Давидович
  • Ишин Сергей Вячеславович
  • Степанов Сергей Семенович
  • Шилин Евгений Павлович
RU2568527C1
СПОСОБ УПРАВЛЕНИЯ КОНВЕРТОПЛАНОМ ВЕРТИКАЛЬНОГО ВЗЛЕТА И ПОСАДКИ 2022
  • Скрябин Алексей Валерьевич
  • Халецкий Леонид Викторович
  • Бибикова Кристина Игоревна
  • Аполлонов Дмитрий Вадимович
  • Кругов Антон Александрович
  • Шибаев Владимир Михайлович
RU2795885C1
СПОСОБ БЕЗОПАСНОГО СТАРТА РАКЕТЫ С МНОГОДВИГАТЕЛЬНОЙ ПЕРВОЙ СТУПЕНЬЮ 2011
  • Володин Валерий Дмитриевич
  • Соломаха Сергей Григорьевич
  • Ветлов Виктор Иванович
  • Цуриков Юрий Александрович
  • Лотарев Николай Михайлович
RU2481251C1
САМОЛЁТ ВЕРТИКАЛЬНОГО ВЗЛЁТА И ПОСАДКИ 2021
  • Горшков Александр Александрович
RU2805888C2
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ РАЗГОННОГО БЛОКА НА УЧАСТКЕ ДОРАЗГОНА 2010
  • Сыров Анатолий Сергеевич
  • Соколов Владимир Николаевич
  • Ежов Владимир Васильевич
  • Бочаров Михаил Викторович
RU2424954C1
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ РАЗГОННОГО БЛОКА В КОНЦЕ МАНЕВРА 2010
  • Сыров Анатолий Сергеевич
  • Соколов Владимир Николаевич
  • Ежов Владимир Васильевич
  • Бочаров Михаил Викторович
RU2432596C1
Способ и устройство улучшения путевой управляемости самолета-амфибии (гидросамолета) при глиссировании 2018
  • Бондарец Анатолий Яковлевич
  • Крееренко Сергей Сергеевич
RU2692740C1
СПОСОБ УПРАВЛЕНИЯ ПРОГРАММНЫМ РАЗВОРОТОМ РАЗГОННОГО БЛОКА 2018
  • Межирицкий Ефим Леонидович
  • Лобанов Владимир Анатольевич
  • Вершинина Лариса Анатольевна
  • Легеньков Петр Витальевич
  • Минаев Александр Борисович
  • Шумовский Роман Юрьевич
  • Сапожников Александр Илариевич
RU2722628C2
СПОСОБ ЗАЩИТЫ ОТ АВАРИИ МНОГОКАНАЛЬНЫХ СИСТЕМ УПРАВЛЕНИЯ РАКЕТ 2012
  • Альтшулер Александр Шоломович
  • Владимиров Александр Владимирович
  • Лобанов Владимир Анатольевич
  • Лотарев Николай Михайлович
RU2521117C1

Иллюстрации к изобретению RU 2 739 645 C1

Реферат патента 2020 года СПОСОБ КОМПЕНСАЦИИ ПОТЕРИ ТЯГИ ДВИГАТЕЛЯМИ ОРИЕНТАЦИИ РАЗГОННОГО БЛОКА

Изобретение относится к ракетно-космической технике. В способе компенсации потери тяги двигателями ориентации разгонного блока используют алгоритм диагностики отказов двигателей ориентации и при критической потере тяги двигателями ориентации в канале тангажа или рысканья используют двигатели ориентации в канале крена. В алгоритме диагностики отказов определяют номинальный момент М, создаваемый двигателем, измеряют угловую скорость разгонного блока, на основании которой определяют корректировку момента р, создаваемого двигателем, ее математическое ожидание <р> и ее дисперсию D(p); выбирают постоянную времени апериодического звена, посредством которого исключают ложную идентификации отказа двигателей; выбирают признак критической потери тяги двигателями: М+<р> < М/3 и D(p) < М2/25. Техническим результатом изобретения является обеспечение ориентации разгонного блока при выходе из строя всех штатных двигателей ориентации в одном из каналов тангажа или рысканья путем использования двигателей ориентации в канале крена. 3 ил.

Формула изобретения RU 2 739 645 C1

Способ компенсации потери тяги двигателями ориентации разгонного блока, заключающийся в том, что используют алгоритм диагностики отказов двигателей ориентации и при критической потере тяги двигателями ориентации в канале тангажа или рысканья используют двигатели ориентации в канале крена, при этом в алгоритме диагностики отказов определяют номинальный момент М, создаваемый двигателем, измеряют угловую скорость разгонного блока, на основании которой определяют корректировку момента р, создаваемого двигателем, ее математическое ожидание <р> и ее дисперсию D(p); выбирают постоянную времени апериодического звена, посредством которого исключают ложную идентификацию отказа двигателей; выбирают признак критической потери тяги двигателями: М+<р> < М/3 и D(p) < М2/25.

Документы, цитированные в отчете о поиске Патент 2020 года RU2739645C1

Жирнов А.В
и др
Алгоритм диагностики отказов двигателей ориентации МКС на основе самонастраивающейся бортовой модели динамики углового движения
Вестник МГТУ им
Н.Э
Баумана
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
-М.: МГТУ им
Н.Э
Баумана, 2016
Раушенбах Б.В
и др
Управление ориентацией космических аппаратов
М.: "Наука", 1974
СПОСОБ ФОРМИРОВАНИЯ ПРОГРАММЫ ОРИЕНТАЦИИ РАЗГОННОГО БЛОКА ПРИ ТЕРМИНАЛЬНОМ УПРАВЛЕНИИ ЕГО НАВЕДЕНИЕМ НА ЗАДАННУЮ ОРБИТУ 2005
  • Сыров Анатолий Сергеевич
  • Соколов Владимир Николаевич
  • Ежов Владимир Васильевич
RU2282568C1

RU 2 739 645 C1

Авторы

Шумовский Роман Юрьевич

Коробков Николай Владимирович

Митягина Лариса Алексеевна

Полежаева Татьяна Александровна

Даты

2020-12-28Публикация

2019-12-25Подача