Изобретение относится к керамическим волокнам смешанного оксидного состава: алюмомагниевой шпинели (MgAl2O4) и алюмоиттриевого граната (Y3Al5O12) на основе волокнообразующих органомагний-оксаниттрийоксаналюмоксановых олигомеров.
Керамические волокна смешанного оксидного состава, например, α-Al2O3 и t-ZrO2, YAG-ZrO2, α-Al2O3 и MgO (Akram M.Y., Ferraris М, Casalegno V., Salvo M., Puchas G., Knohl S., Krenkel W. Joining and testing of alumina fibre reinforced YAG-ZrO2 matrix composites. J. Europ.Ceram. Soc, 2018. Vol. 38(4), 1802-1811. Chandradass J., Balasubramanian M. Effect of magnesium oxide on sol-gel spun alumina and alumina-zirconia fibres. J. Europ.Ceram. Soc, 2006. Vol. 26(13), 2611-2617) широко востребованы для создания высокотемпературных керамокомпозитов с улучшенными механическими свойствами, которые необходимы для изготовления деталей авиационных и наземных газотурбинных двигателей, гиперзвуковых и летательных аппаратов, а также систем тепловой защиты космических аппаратов и гиперзвуковых транспортных средств (Armani C.J., Ruggles-Wrenn М.В., Fair G.E., Hay R.S., Creep of Nextel™ 610 fiber at 1100°C in air and in steam, Int. J. Appl. Ceram. Technol. 2012. Vol. 10(2), 276-284).
Оксиды структуры шпинели и граната обладают не только высокой температурой плавления (2135 и 1940°С соответственно), но и сложной кристаллической структурой, препятствующей движению и распространению трещин.
Описан способ получения оксидных волокон смешанного шпинельно-гранатового состава: (MAS/YAG). Порошок оксида иттрия, порошок алюминия и хлорида алюминия растворяли в уксусной кислоте, смесь нагревали при перемешивании, используя магнитную мешалку, и кипятили с обратным холодильником при 80°С. Мольное соотношение AlCl3 ⋅ 6H2O и Al составляло 3: 1, мольное отношение Al/Y = 5:3, а мольное соотношение уксусной кислоты и Y составляло 1,5:1, мольное соотношение H2O и Al составляло 20:1. В качестве прядильной добавки (28% масс. от массы сырья) использовался поливинилпирролидон (ПВП). Согласно расчетной массе YAG, в раствор было добавлено 5% масс. MgO. Затем смешанный раствор концентрировали с получением прядильного золя на водяной бане (60°С). Волокна геля были приготовлены путем погружения тонкого стеклянного стержня в прядильный золь и его медленного вытягивания (вручную) при комнатной температуре, максимальная длина гелевого волокна составляла около 80 см. Затем гелевые волокна сушили при температуре 60°С в течение 24 ч. Высушенные волокна спекали со скоростью нагрева 2°С /мин. до 1400-1600°С. После нагрева при 1400°С в течение 2 ч получали композитные волокна MAS/YAG. (Ma X, Lv Z, Tan Н, Nan J, Wang С, Preparation and grain-growth of magnesia-alumina spinel/yttrium aluminum garnet composite fibers, J. , 2018. Vol. 62(3), 279-284,).
Способы получения волокон смешанного оксидного состава: алюмо-магниевой шпинели (MgAl2O4) и алюмоиттриевого граната (Y3Al5O12) из расплава предкерамического полимера из патентной литературы не известны.
Наиболее близким к предлагаемому и принятый нами в качестве прототипа является способ получения модифицированных волокон оксида алюминия, заключающийся в расплавном формовании полимерных волокон при 60-160°С из волокнообразующих органоиттрийоксаналюмоксанов с мольным отношением Al:Y=100-200 или органомагнийоксаниттрийоксаналюмоксанов с мольным отношением Al:Y=160-200 и Al:Mg=160-200 с дальнейшей ступенчатой термообработкой до 1200-1300°С, приводящей к образованию керамических алюмооксидных волокон, модифицированных высокотемпературными соединениями иттрия или иттрия и магния, причем нагрев проводят по следующему режиму: от комнатной температуры до 500°С со скоростью 1°С/мин, от 500°С до 1300°С со скоростью 10°С/мин и последующей выдержкой в течение 10 мин, при этом термообработку осуществляют в атмосфере воздуха. (РФ №2716621, МПК: С04В 35/111, С04В 35/634, D01F 1/07, 2020 г.).
Задачей предлагаемого изобретения является получение керамических волокон смешанного оксидного состава: алюмомагниевой шпинели (MgAl2O4) и алюмоиттриевого граната (Y3Al5Oi2), формованием из расплава волокнообразующего полимера, с последующим пиролизом полимерных волокон до керамических волокон.
Для решения поставленной задачи предложен способ получения керамических волокон смешанного оксидного состава: алюмомагниевой шпинели и алюмоиттриевого граната (MgAl2O4/Y3Al5O12), заключающийся в расплавном формовании полимерных волокон при 80-180°С из волокнообразующих органомагнийоксаниттрийоксаналюмоксанов с мольным отношением Al/Y=5,8-6,0 и Al/Mg=2,4-2,5 с дальнейшей ступенчатой термообработкой в атмосфере воздуха при 50 и 1500°С.
Получение волокон смешанного оксидного состава MgAl2O4/Y3Al5O12 осуществляют следующим образом: волокнообразующие органомагнийоксаниттрийоксаналюмоксаны, полученные согласно изобретению, описанному в патенте РФ №2644950 (МПК: С04В 35/443, C07F19/00, C08G79/14, 2018 г.) формуют на машине расплавного формования при температурах 110-180°С и наматывают на приемную шпулю с выбранной скоростью, выбранную в диапазоне 150-300 об/мин, в зависимости от получения желаемого диаметра волокна. Далее полимерные волокна снимают с приемной шпули, перекладывают на корундовые маты и подвергают их ступенчатой термообработке сначала с медленным нагревом (0,4-2°С/мин) до 500°С для удаления органической составляющей волокна, затем нагревают со скоростью 5-20°С/мин до 1300-1500°С с выдержкой до 30 мин. В результате получают высокотемпературные керамические волокна смешанного оксидного состава MgAl2O4/Y3Al5O12, диаметром 10-150 мкм.
Сущность изобретения иллюстрируется следующим примером.
Пример 1.
В предварительно нагретый до 110°С экструдер формовочной машины загружают 200 г волокнообразующего органомагнийоксаниттрийоксаналюмоксана с мольным отношением A1:Y≈6,0 и Al:Mg≈2,5. Задают скорость вращения приемной шпули 250 об/мин для вытягивания и намотки полимерного волокна. Затем намотанное полимерное волокно (Фиг. 1) снимают с приемной шпули, укладывают на корундовый мат и помещают в печь для дальнейшей термообработки (Фиг. 2). Нагрев проводят в атмосфере воздуха по следующему режиму: от комнатной температуры до 500°С со скоростью 1°С/мин. - отверждение волокна (Фиг. 3), от 500°С до 1300 и далее до 1500°С со скоростью 10°С/мин с выдержкой в течение 10 мин. Термообработка осуществляется в атмосфере воздуха. В результате получают керамические волокна смешанного оксидного состава MgAl2O4/Y3Al5O12 (Фиг. 4).
Элементный и фазовый составы керамических волокон смешанного оксидного состава MgAl2O4/Y3Al5O12 доказаны с помощью СЭМ и РФА.
Изучение морфологии поверхности полимерных и керамических волокон смешанного оксидного состава MgAl2O4/Y3Al5O12 и их элементного состава осуществлялось с использованием сканирующего электронного микроскопа (СЭМ) совмещенного с энергодисперсионным анализатором (ЭДС). Результаты представлены на фиг. 5, 6.
Методом РФА определен фазовый состав керамических волокон смешанного оксидного состава MgAl2O4/Y3Al5O12 при 1300 и 1500°С (Фиг. 7а и 7б).
По данным РФА фазовый состав керамических волокон на основе органомагнийоксаниттрийоксаналюмоксанов с мольным отношением Al:Y≈6,0 и Al:Mg≈2,5 после пиролиза при 1300°С: MgAl2O4 - 79%масс., A12Y4O9 - 17%масс, Al5Y3Oi2 - 4%масс., следы A13Y5, а при 1500°С: MgAl2O4 - 77% масс. и Y3Al5Oi2 - 23% масс.(Фиг. 7а и 7б).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ГРАНАТОВЫХ ВОЛОКОН, МОДИФИЦИРОВАННЫХ ХРОМОМ | 2021 |
|
RU2767236C1 |
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ ВОЛОКОН ОКСИДА АЛЮМИНИЯ | 2018 |
|
RU2716621C1 |
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМАГНИЙОКСАНИТТРИЙОКСАНАЛЮМОКСАНОВ, СВЯЗУЮЩИЕ И ПРОПИТОЧНЫЕ МАТЕРИАЛЫ НА ИХ ОСНОВЕ | 2017 |
|
RU2644950C1 |
ВОЛОКНООБРАЗУЮЩИЕ ОРГАНОИТТРИЙОКСАНАЛЮМОКСАНЫ | 2014 |
|
RU2551431C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОПОЛИКАРБОСИЛАНОВ | 2019 |
|
RU2712240C1 |
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМАГНИЙОКСАНАЛЮМОКСАНСИЛОКСАНОВ | 2019 |
|
RU2726365C1 |
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМЕТАЛЛОКСАНИТТРИЙОКСАНАЛЮМОКСАНОВ, СВЯЗУЮЩИЕ И ПРОПИТОЧНЫЕ МАТЕРИАЛЫ НА ИХ ОСНОВЕ | 2017 |
|
RU2668226C1 |
ТРЕЩИНОСТОЙКИЕ ВОЛОКНИСТЫЕ КЕРАМИЧЕСКИЕ КОМПОЗИТЫ | 2015 |
|
RU2588534C1 |
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМАГНИЙОКСАНАЛЮМОКСАНОВ, СВЯЗУЮЩИЕ И ПРОПИТОЧНЫЕ МАТЕРИАЛЫ НА ИХ ОСНОВЕ | 2016 |
|
RU2615147C1 |
Способ изготовления керамических плавильных тиглей | 2023 |
|
RU2809398C1 |
Изобретение относится к способам получения волокон смешанного оксидного состава MgAl2O4/Y3Al5O12 для создания высокотемпературных керамокомпозитов с улучшенными механическими свойствами. Способ заключается в расплавном формовании полимерных волокон при 80-180°С из волокнообразующих органомагнийоксаниттрийоксаналюмоксанов с мольным отношением Al/Y 5,8-6,0 и Al/Mg 2,4-2,5 с дальнейшей ступенчатой термообработкой в атмосфере воздуха при 500 и 1500°С, при которой образуются керамические волокна смешанного оксидного состава: MgAl2O4 и Y3Al5O12. 1 пр., 7 ил.
Способ получения керамических волокон смешанного оксидного состава MgAl2O4/Y3Al5O12, заключающийся в расплавном формовании полимерных волокон при 80-180°С из волокнообразующих органомагнийоксаниттрийоксаналюмоксанов с мольным отношением Al/Y 5,8-6,0 и Al/Mg 2,4-2,5 с дальнейшей ступенчатой термообработкой в атмосфере воздуха при 500 и 1500°С, приводящей к образованию керамических волокон смешанного оксидного состава: MgAl2O4 и Y3Al5O12.
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ ВОЛОКОН ОКСИДА АЛЮМИНИЯ | 2018 |
|
RU2716621C1 |
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМАГНИЙОКСАНИТТРИЙОКСАНАЛЮМОКСАНОВ, СВЯЗУЮЩИЕ И ПРОПИТОЧНЫЕ МАТЕРИАЛЫ НА ИХ ОСНОВЕ | 2017 |
|
RU2644950C1 |
ШИХТА НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ И СПОСОБ ПОЛУЧЕНИЯ ПРОЧНОЙ КЕРАМИКИ | 2019 |
|
RU2730229C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРОЗРАЧНОЙ КЕРАМИКИ АЛЮМОИТТРИЕВОГО ГРАНАТА | 2015 |
|
RU2584187C1 |
Способ подготовки шихты | 1981 |
|
SU1011602A1 |
US 5378665 A1, 03.01.1995. |
Авторы
Даты
2022-07-18—Публикация
2021-04-23—Подача