Изобретение относится к технологии переработки отходов, содержащих серную кислоту, которые образуются в значительных количествах в нефтеперерабытвающей и нефтехимической промышленности, где серная кислота является катализатором или реагентом.
Известен способ переработки сернокислотных отходов путем смешения их с нагретым до 240-400оС углеводородным продуктом [1]
Основными недостатками указанного способа являются неполное восстановление кислоты и кислых органических соединений до сернистого ангидрида, образование значительных количеств твердых продуктов и закоксование технологического оборудования.
Наиболее близким к предлагаемому является способ переработки сернокислотных отходов, включающий эмульгирование их с углеводородным продуктом при их весовом соотношении от 1:1 до 1:20 и температуре 20-130оС, смешение полученной эмульсии с нагретым до 240-400оС углеводородным продуктом, выдерживание образовавшейся смеси в сечение 15-30 мин, разделение смеси на жидкий и газообразный продукты с последующим охлаждением газообразного продукта потоком циркулирующего орошения в конденсаторе смешения для конденсации и удаления из газа паров воды [2]
Недостатками этого способа являются значительные энергозатраты на проведение процесса из-за необходимости нагрева циркулирующего углеводородного продукта до 240-400оС и недостаточно высокая степень восстановления серной кислоты до сернистого ангидрида.
Целью изобретения является снижение энергозатрат на проведение процесса и повышение степени восстановления серной кислоты до сернистого ангидрида.
Цель достигается предлагаемым способом переработки сернокислотных отходов, включающим их эмульгирование при добавлении углеводородного продукта при температуре 80-120оС, смешение полученной эмульсии с дополнительным количеством нагретого углеводородного продукта, выдерживание образовавшейся смеси при повышенной температуре, разделение ее на жидкий и газообразный продукты и последующее охлаждение газообразного продукта в конденсаторе смешения, в котором эмульгирование ведут в присутствии катализатора на основе металлфталоцианина, взятого в количестве 0,0005-0,005 мас. на количество серной кислоты в сернокислотных отходах, смешение эмульсии с нагретым углеводородным продуктом проводят при нагреве его до 200-220оС, и выдерживание смеси осуществляют при 160-180оС в течение 1-1,5 ч. При этом в качестве катализатора используют тетрасульфофталоцианин железа или фталоцианин железа.
Отличительными признаками предлагаемого способа являются эмульгирование сернокислотных отходов нагретым углеводородным продуктом в присутствии катализатора на основе металлфталоцианина, смешение полученной эмульсии с дополнительным количеством углеводородного продукта при нагреве его до 200-220оС, выдерживание образовавшейся смеси при 160-180оС в течение 1-1,5 ч и использование в качестве металлфталоцианина тетрасульфофталоцианин железа или фталоцианин железа в указанных выше количествах.
На чертеже представлена схема осуществления предлагаемого способа.
Углеводородный продукт насосом 1 подают в смеситель-диспергатор 2. Одновременно в смеситель-диспергатор 2 насосом 3 подают кислотосодержащее сырье и насосом 4 из емкости 5 водный или кислый раствор металлфталоцианина в качестве катализатора. Образовавшуюся тонкую диспергированную эмульсию продуктов нагревают в смесителе 6 до 160-180оС подогретым циркулирующим потоком углеводородного продукта. Реакционную массу из смесителя 6 направляют в сепаратор 7, где выдерживают в течение 1-1,5 ч.
Газообразные продукты реакции из сепаратора 7 выводят в конденсатор 8 смешения, а жидкий углеводородный продукт насосом 9 прокачивают через нагревательную печь 10 и направляют в смеситель 6, а балансовое количество выводят через концевой холодильник 11 с установки. Полученные газообразные и жидкие продукты обрабатывают в соответствии с их свойствами.
Предлагаемый способ предусматривает возможность переработки разнообразных сернокислотных отходов с различным содержанием серной кислоты, воды и органических соединений.
П р и м е р 1. Гудрон прямой перегонки нефти эмульгируют с кислым гудроном процесса "Парекс" и водным раствором тетрасульфофталоцианина железа, взятого в количестве 0,0005 мас. от количества серной кислоты в сернокислотном отходе. Эмульгирование проводят при 80-90оС и соотношении гудрон:кислый гудрон 10:1. Полученную эмульсию смешивают в реакционном аппарате с нагретым прямогонным гудроном в соотношении 1:3 и выдерживают реакционную смесь при 180оС в течение 1,5 ч.
Состав кислого гудрона, мас. Серная кислота 69,5 Вода 4
Сульфокислоты в пере- счете на SO3Н 5 Органические примеси 21,5
Свойства исходного прямогонного гудрона: удельный вес 985 кг/м3; содержание общей серы, мас. 3,10; кислотность (мг КОН/г) отсутствует.
В полученном газе содержание сернистого ангидрида составляет 96 мас. СО2 2 мас. легких углеводородных газов не более 2 мас.
Остальные результаты эксперимента приведены в таблице.
П р и м е р 2. Проводят по примеру 1, но в присутствии 0,005 мас. тетрасульфофталоцианина железа от взятого количества серной кислоты, содержащейся в кислом гудроне.
Состав полученного газа аналогичен составу газа по примеру 1.
Остальные результаты эксперимента приведены в таблице.
П р и м е р 3. Проводят по примеру 2, но при выдержке реакционной смеси в течение 1 ч и температуре 160оС.
В полученном газе содержание сернистого ангидрида составляет 97 мас. СО2 2,0 мас. легких углеводородных газов не более 1,0 мас.
Остальные результаты эксперимента приведены в таблице.
П р и м е р 4. Проводят по примеру 3, но с использованием отработанной серной кислоты алкилирования.
Состав отработанной серной кислоты, мас. Серная кислота 85 Вода 6
Сульфокислоты в пере- счете на SO3Н 0,5 Органические примеси 8,5
Состав полученного газа аналогичен составу газа по примеру 3. Остальные результаты эксперимента приведены в таблице.
П р и м е р 5. Проводят по примеру 3, но в качестве катализатора используют фталоцианин железа в количестве 0,0005 мас. от взятого объема серной кислоты, содержащейся в сернокислотном отходе.
Состав полученного газа аналогичен составу газа по примеру 3.
Остальные результаты эксперимента приведены в таблице.
П р и м е р 6. Проводят по примеру 5, но в присутствии 0,005 мас. фталоцианина железа.
Состав полученного газа аналогичен составу газа по примеру 3.
Остальные результаты приведены в таблице.
П р и м е р 7. Проводят по примеру 1, но в отсутствии тетрасульфофталоцианина железа.
В полученном газе содержится 95 мас. сернистого ангидрида; СО2 2,5 мас. легких углеводородов не более 2,5 мас.
Остальные результаты эксперимента приведены в таблице.
П р и м е р 8. Проводят по примеру 1, но в отсутствии тетрасульфофталоцианина железа и при температуре 280оС.
В полученном газе содержание сернистого ангидрида составляет 92 мас. СО2 3 мас. легких углеводородов не более 5 мас.
Остальные результаты эксперимента приведены в таблице.
Из приведенных в таблице экспериментальных данных видно, что проведение процесса по предлагаемому способу с использованием катализатора в сравнении с известным без катализатора позволяет существенно снизить температуру нагрева реакционной смеси и обеспечить 100%-ное восстановление серной кислоты до сернистого ангидрида.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ДЕЗОДОРИРУЮЩЕЙ ОЧИСТКИ НЕФТИ И ГАЗОКОНДЕНСАТА ОТ СЕРОВОДОРОДА И НИЗКОМОЛЕКУЛЯРНЫХ МЕРКАПТАНОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1997 |
|
RU2120464C1 |
СПОСОБ ОЧИСТКИ НЕФТИ И ГАЗОКОНДЕНСАТА ОТ СЕРОВОДОРОДА | 1996 |
|
RU2109033C1 |
СПОСОБ ДЕЗОДОРИРУЮЩЕЙ ОЧИСТКИ НЕФТИ И ГАЗОКОНДЕНСАТА ОТ СЕРОВОДОРОДА И МЕРКАПТАНОВ | 1997 |
|
RU2140960C1 |
СПОСОБ ДЕЗОДОРИРУЮЩЕЙ ОЧИСТКИ НЕФТИ И ГАЗОКОНДЕНСАТА ОТ СЕРОВОДОРОДА И НИЗКОМОЛЕКУЛЯРНЫХ МЕРКАПТАНОВ | 2002 |
|
RU2213764C1 |
СПОСОБ ОЧИСТКИ ПИРОГАЗА ОТ ДИОКСИДА УГЛЕРОДА И СЕРОВОДОРОДА | 1992 |
|
RU2019271C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДНЫХ ДИСТИЛЛЯТОВ С НИЗКИМ СОДЕРЖАНИЕМ СЕРЫ | 1997 |
|
RU2125586C1 |
СПОСОБ ДЕЗОДОРИРУЮЩЕЙ ОЧИСТКИ НЕФТИ И ГАЗОКОНДЕНСАТА ОТ СЕРОВОДОРОДА И ЛЕГКИХ МЕРКАПТАНОВ | 1995 |
|
RU2114896C1 |
Способ переработки сернокислотных отходов | 1985 |
|
SU1293199A1 |
СПОСОБ ХРАНЕНИЯ СЕРОВОДОРОД- И/ИЛИ МЕРКАПТАНСОДЕРЖАЩЕЙ НЕФТИ, НЕФТЕПРОДУКТОВ И ГАЗОКОНДЕНСАТА В РЕЗЕРВУАРЕ ПОД АТМОСФЕРОЙ ИНЕРТНОГО ГАЗА | 2000 |
|
RU2189340C2 |
СПОСОБ АДСОРБЦИОННОЙ ОЧИСТКИ БЕНЗИНОВ ОТ МЕРКАПТАНОВ | 1999 |
|
RU2163250C2 |
Сущность изобретения: сернокислотные отходы эмульгируют при добавлении углеводородного продукта в присутствии 0,0005 0,005 мас. металлфталоцианинового катализатора при 80 120°С. Полученную эмульсию смешивают с дополнительным количеством нагретого до 200 220°С углеводородного продукта. Полученную смесь выдерживают при 160 180°С в течение 1 1,5 ч и разделяют на жидкий и газообразный продукты. Газообразный продукт охлаждают в конденсаторе смешения. В качестве катализатора используют тетрасульфофталоцианин железа или фталоцианин железа. 1 з.п. ф-лы, 1 табл. 1 ил.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ переработки сернокислотных отходов | 1971 |
|
SU515773A1 |
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами | 1921 |
|
SU10A1 |
Авторы
Даты
1995-09-27—Публикация
1993-07-27—Подача