СТАЛЬ Российский патент 2002 года по МПК C22C38/14 

Описание патента на изобретение RU2179196C2

Изобретение относится к металлургии, а именно к составам сталей для магистральных нефтепроводов и газопроводов.

Сталь, используемая при изготовлении труб для магистральных нефтепроводов и газопроводов, должна сочетать высокие механические и антикоррозионные свойства. Техническое соглашение ТС-105-21-98 регламентирует следующий комплекс свойств (табл. 1).

Известна сталь [1], имеющая следующий химический состав, мас.%:
Углерод - 0,06-0,10
Кремний - 0,17-0,37
Марганец - 1,0-1,6
Молибден - 0,3-0,5
Ванадий - 0,05-0,1
Алюминий - 0,02-0,05
Церий - 0,0005-0,005
Кальций - 0,0005-0,005
Железо - Остальное
Недостаток известной стали состоит в том, что она имеет низкие показатели коррозионной стойкости и ударной вязкости (при -60oC).

Известна также конструкционная сталь следующего химического состава, мас.% [2]:
Углерод - 0,15-0,35
Кремний - 0,15-1,0
Марганец - 0,4-1,5
Ванадий - 0,04-0,18
Ниобий - 0,008-0,1
Алюминий - 0,02-0,15
РЗМ - 0,002-0,2
Железо - Остальное
Известная конструкционная сталь по коррозионной стойкости и ударной вязкости не соответствует требованиям, предъявляемым к сталям для магистральных нефтепроводов и газопроводов.

Наиболее близкой по своему химическому составу и свойствам к предлагаемой стали является сталь [3], содержащая, мас.%:
Углерод - 0,08-0,16
Кремний - 0,17-0,37
Марганец - 1,40-1,70
Ванадий - 0,06-0,12
Ниобий - 0,06-0,12
Алюминий - 0,015-0,04
Сера - 0,015-0,035
Фосфор - 0,010-0,030
Бор - 0,0008-0,004
Церий - 0,005-0,01
Железо - Остальное (прототип)
Известная сталь имеет низкие коррозионную стойкость и ударную вязкость.

Техническая задача, решаемая предлагаемым изобретением, состоит в повышении коррозионной стойкости и ударной вязкости стали.

Для решения этой технической задачи сталь, содержащая углерод, кремний, марганец, ванадий, ниобий, алюминий, серу, фосфор и железо, дополнительно содержит титан при следующем соотношении компонентов, мас.%:
Углерод - 0,05-0,15
Кремний - 0,30-0,90
Марганец - 0,40-0,90
Ванадий - 0,05-0,20
Ниобий - 0,01-0,08
Алюминий - 0,01-0,08
Сера - 0,001-0,02
Фосфор - 0,005-0,02
Титан - 0,001-0,04
Железо - Остальное
Сопоставление известного состава стали, принятой в качестве прототипа [3] , и предложенной показывает, что содержания в них углерода, кремния, ванадия, ниобия, алюминия, серы и фосфора полностью или частично взаимно перекрываются. Предложенная сталь дополнительно содержит 0,001-0,04% титана и меньшее количество марганца. За счет этого обеспечивается повышение коррозионной стойкости и ударной вязкости стали.

Углерод в стали предложенного состава определяет ее прочность. Снижение содержания углерода менее 0,05% приводит к снижению прочности ниже допустимого уровня. Увеличение содержания углерода сверх 0,15% ухудшает пластичность и вязкость стали.

Кремний раскисляет и упрочняет сталь, повышает ее упругие свойства. Раскисление стали кремнием протекает по реакции:
2FeO + Si ---> 2Fe + SiO2.

При содержании кремния менее 0,3% прочность стали недостаточна. Увеличение содержания кремния более 0,9% приводит к возрастанию количества силикатных включений, охрупчивает сталь, ухудшает ее пластичность.

Марганец введен для раскисления и повышения прочности стали. Раскисляющее действие марганца описывает химическая реакция:
FeO + Mn ---> MnO + Fe.

При содержании марганца менее 0,40% имеет место снижение прочностных и вязкостных свойств. Увеличение содержания этого элемента более 0,90% ухудшает пластичность стали до δ5< 24% , что недопустимо.

Ванадий является карбидообразующим элементом в данной стали. Измельчая зерно, он улучшает свариваемость, прочность и вязкость стали. При содержании ванадия менее 0,05% его положительное воздействие не проявляется. Увеличение содержания ванадия более 0,20% оказалось нецелесообразным, т.к. не приводило к улучшению свойств стали.

Ниобий является эффективным карбидообразователем, измельчающим зерна микроструктуры. При содержании ниобия менее 0,01% ударная вязкость стали ниже допустимой. Увеличение содержания ниобия более 0,08% приводит к его выделению на границах зерен в виде интерметаллических соединений. Это ухудшает свойства стали.

Алюминий является раскисляющим и модифицирующим элементом. Кроме того, он связывает азот в нитриды. При содержании алюминия менее 0,01% его воздействие проявляется слабо, сталь имеет низкие механические свойства. Увеличение содержания алюминия более 0,08% приводит к графитизации стали, потере прочности и ухудшению свариваемости.

Сера, присутствующая в стали, образует сульфиды марганца. При содержании серы 0,001-0,02% она проявляет "сульфидный эффект", понижая порог хладноломкости. Снижение содержания серы менее 0,001% приводит к повышению порога хладноломкости. Увеличение содержания серы более 0,02% ухудшает вязкостные, прочностные и пластические свойства стали ниже допустимого уровня, особенно в направлении поперек направления прокатки штрипса.

Фосфор в количестве 0,005-0,02% целиком растворяется в α-железе, что приводит к упрочнению металлической матрицы, повышению коррозионной стойкости стали. Однако увеличение содержания фосфора более 0,02% вызывает охрупчивание стали и снижение показателя ударной вязкости, что недопустимо. Уменьшение содержания фосфора менее 0,005%, во-первых, ухудшает коррозионную стойкость стали и, во-вторых, экономически нецелесообразно.

Введение в рассматриваемую сталь титана обеспечило повышение ее коррозионной стойкости и ударной вязкости. При содержании титана менее 0,001% ухудшается коррозионная стойкость: скорость общей коррозии стали Q > 0,8 мм/год, CLR > 4, CTP > 6. Увеличение содержания титана сверх 0,10% ухудшает комплекс механических свойств стали, приводит к образованию подкорковой пористости у поверхности слитка и снижению качества горячекатаных штрипсов.

В табл. 2 приведен химический состав сталей с различным содержанием легирующих элементов, а в табл.3 - результаты испытаний свойств этих сталей.

Из табл. 2 и 3 следует, что сталь предложенного состава (составы N 2 и N 4) имеет наиболее высокие показатели коррозионной стойкости и ударной вязкости, сталь пригодна для изготовления труб магистральных нефтепроводов и газопроводов. В случаях запредельных значений содержания легирующих элементов (составы N 1 и N 5) коррозионная стойкость и ударная вязкость снижаются. Также более низкими коррозионной стойкостью и ударной вязкостью обладает сталь-прототип (состав N 6).

Технико-экономические преимущества предложенной стали заключаются в том, что дополнительное введение в ее состав 0,001- 0,04% титана при регламентированном содержании остальных элементов обеспечивает формирование благоприятной микроструктуры, имеющей высокие коррозионную стойкость и вязкостные свойства при регламентированном сочетании прочности и пластичности. Предложенная сталь также характеризуется хорошей свариваемостью. Поэтому она пригодна для изготовления нефтепроводов и газопроводов, срок безаварийной работы которых будет увеличен.

В качестве базового объекта выбрана сталь-прототип. Использование предложенной стали позволит повысить рентабельность производства электросварных труб на 10-15%.

Литература
1. Патент Российской Федерации N 2100470, МПК С 22 С 38/12, 1997 г.

2. Авт.св. СССР N 753924, МПК С 22 С 38/12, 1980 г.

3. Авт.св. СССР N 1523589, МПК С 22 С 38/12, 1989 г.- прототип.

Похожие патенты RU2179196C2

название год авторы номер документа
СТАЛЬ ДЛЯ ГАЗО- И НЕФТЕТРУБОПРОВОДОВ 2002
  • Наконечный Анатолий Яковлевич
  • Урцев В.Н.
  • Хабибулин Д.М.
  • Штоль В.Ю.
  • Аникеев С.Н.
  • Платов С.И.
RU2222630C1
СТАЛЬ ДЛЯ МАГИСТРАЛЬНЫХ НЕФТЕ- И ГАЗОПРОВОДОВ 2001
  • Степанов А.А.
  • Ламухин А.М.
  • Зинченко С.Д.
  • Дьяконова В.С.
  • Голованов А.В.
  • Гуркин М.А.
  • Рослякова Н.Е.
  • Чикалов С.Г.
  • Комаров А.И.
  • Седых А.М.
  • Степанцов Э.В.
  • Роньжин А.И.
  • Шишов А.А.
  • Тетюева Т.В.
  • Зикеев В.Н.
  • Клыпин Б.А.
RU2180016C1
Малокремнистая судостроительная сталь 2016
  • Веревкин Валерий Иванович
RU2630086C1
Хладостойкая высокопрочная сталь 2020
  • Мирзоян Генрих Сергеевич
  • Орлов Александр Сергеевич
  • Володин Алексей Михайлович
  • Дегтярев Александр Федорович
RU2746598C1
СТАЛЬ 1999
  • Дуб В.С.
  • Лобода А.С.
  • Марков С.И.
  • Онищенко А.К.
  • Головин С.В.
  • Болотов А.С.
  • Тарлинский В.Д.
  • Микулин Ю.И.
  • Кумылганов А.С.
  • Лобач В.П.
  • Ибрагимов М.Ш.
  • Ермаченков В.А.
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Суханов В.В.
  • Дуб А.В.
  • Дурынин В.А.
RU2141002C1
НИЗКОУГЛЕРОДИСТАЯ СТАЛЬ И ПРОКАТ ИЗ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ ПОВЫШЕННОЙ СТОЙКОСТИ К ВОДОРОДНОМУ РАСТРЕСКИВАНИЮ И ПОВЫШЕННОЙ ХЛАДОСТОЙКОСТИ 2011
  • Ламухин Андрей Михайлович
  • Эфрон Леонид Иосифович
  • Кудашов Дмитрий Викторович
  • Московой Константин Анатольевич
  • Дубинин Игорь Владимирович
  • Попков Антон Геннадьевич
  • Хлыбов Олег Станиславович
RU2496906C2
СТАЛЬ НИЗКОЛЕГИРОВАННАЯ СВАРИВАЕМАЯ 2006
  • Степанов Александр Александрович
  • Немтинов Александр Анатольевич
  • Голованов Александр Васильевич
  • Мальцев Андрей Борисович
  • Меньшикова Галина Алексеевна
  • Дьяконова Валентина Сергеевна
  • Попов Евгений Сергеевич
  • Лятин Андрей Борисович
  • Латышева Татьяна Олеговна
  • Рослякова Наталья Евгеньевна
  • Горелик Павел Борисович
  • Трайно Александр Иванович
  • Тетюева Тамара Викторовна
RU2335568C2
ТРУБА ДЛЯ НЕФТЕГАЗОПРОДУКТОПРОВОДОВ И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2000
  • Дуб В.С.
  • Лобода А.С.
  • Головин С.В.
  • Болотов А.С.
  • Тарлинский В.Д.
  • Дуб А.В.
  • Комаров А.И.
  • Чикалов С.Г.
  • Романцов И.А.
  • Роньжин А.И.
  • Ламухин А.М.
  • Марков С.И.
  • Дементьев А.В.
  • Тахаутдинов Р.С.
RU2180691C1
ШТРИПСОВАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2009
  • Немтинов Александр Анатольевич
  • Ордин Владимир Георгиевич
  • Скорохватов Николай Борисович
  • Корчагин Андрей Михайлович
  • Шаталов Сергей Викторович
  • Ефимов Семен Викторович
  • Тихонов Сергей Михайлович
RU2420603C1
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2012
  • Казаков Игорь Владимирович
  • Молостов Михаил Александрович
  • Денисов Сергей Владимирович
  • Васильев Иван Сергеевич
  • Настич Сергей Юрьевич
  • Морозов Юрий Дмитриевич
  • Зинько Бронислав Филиппович
RU2519720C2

Иллюстрации к изобретению RU 2 179 196 C2

Реферат патента 2002 года СТАЛЬ

Изобретение относится к металлургии, а именно к составам сталей для магистральных нефтепроводов и газопроводов. Предложена сталь, которая содержит компоненты в следующем соотношении, мас. %: углерод 0,05-0,15, кремний 0,30-0,90, марганец 0,40-0,90, ванадий 0,05-0,20, ниобий 0,01-0,08, алюминий 0,01-0,08, сера 0,001-0,020, фосфор 0,005-0,02, титан 0,001-0,04, железо - остальное. Техническим результатом изобретения является повышение коррозионной стойкости и ударной вязкости стали. 3 табл.

Формула изобретения RU 2 179 196 C2

Сталь, содержащая углерод, кремний, марганец, ванадий, ниобий, алюминий, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит титан при следующем соотношении компонентов, мас. %:
Углерод - 0,05 - 0,15
Кремний - 0,30 - 0,90
Марганец - 0,40 - 0,90
Ванадий - 0,05 - 0,20
Ниобий - 0,01 - 0,08
Алюминий - 0,01 - 0,08
Сера - 0,001 - 0,020
Фосфор - 0,005 - 0,02
Титан - 0,001 - 0,04
Железо - Остальное

Документы, цитированные в отчете о поиске Патент 2002 года RU2179196C2

Сталь 1988
  • Курашвили Спартак Ясонович
  • Мирианашвили Иван Владимирович
  • Журули Мераб Александрович
  • Гоголадзе Гурам Иванович
  • Чаганава Зураб Давидович
  • Ломашвили Анзор Николаевич
SU1523589A1
Конструкционная сталь 1971
  • Рудченко Андрей Викторович
  • Литвиненко Денис Ануфриевич
  • Манохин Анатолий Иванович
  • Колпаков Серафим Васильевич
SU558062A1
Сталь 1979
  • Зикеев Владимир Николаевич
  • Гуляев Александр Павлович
  • Литвиненко Денис Ануфриевич
  • Шаров Борис Петрович
  • Косой Леонид Фениасович
  • Гладштейн Леонид Исакович
  • Гуревич Владимир Ильич
  • Зеличенок Борис Юльевич
  • Перельман Леонид Дмитриевич
  • Шафигин Евгений Кириллович
  • Чернышев Евгений Яковлевич
SU840183A1
Конструкционная сталь 1979
  • Насибов Али Гасан
  • Матросов Юрий Иванович
  • Литвиненко Денис Ануфриевич
  • Голованенко Сергей Александрович
  • Шепотинник Леонид Степанович
  • Носоченко Олег Васильевич
  • Бабицкий Марк Самойлович
SU829711A1
СТАЛЬ 1996
  • Лебедев В.В.
  • Животовская Т.В.
  • Щагина Н.Е.
  • Пыхтарь Л.К.
  • Шатов В.В.
  • Павлова А.Г.
RU2100470C1
Электродное покрытие 1975
  • Камакин Николай Ильич
  • Лобковская Раиса Михайловна
  • Румянцев Вячеслав Александрович
  • Архангельский Виктор Аверьянович
  • Артемов Николай Степанович
  • Офицеров Алексей Максимович
SU527276A1
ЕР 0548950 А1, 30.06.1993.

RU 2 179 196 C2

Авторы

Дьяконова В.С.

Латышева Т.О.

Зинченко С.Д.

Меньшикова Г.А.

Медведев А.П.

Тетюева Т.В.

Прохоров Н.Н.

Осипов М.Л.

Нам О.С.

Даты

2002-02-10Публикация

1999-12-28Подача