ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ Российский патент 2003 года по МПК C22C38/48 

Описание патента на изобретение RU2214474C2

Изобретение относится к области металлургии, в частности к высокопрочной коррозионно-стойкой стали аустенитно-мартенситного класса, упрочняемой азотом, обладающей наряду с высокой прочностью высокими значениями пластичности, вязкости и сопротивлением коррозионному растрескиванию.

Сталь предназначена для изготовления высоконагруженных деталей машин, работающих при t=-70...300oС во всеклиматических условиях.

Известна коррозионностойкая сталь переходного класса следующего химического состава, мас.%:
Углерод - 0,18-0,21
Хром - 13-14
Никель - 4-4,5
Молибден - 2,3-2,8
Кремний - 1,7-2,5
Кобальт - 3,5-4,5
Азот - 0,06-0,09
Марганец - 0,1-1,0
Y+Се+La - 0,001-0,05 каждого
Железо - Остальное
Сталь после термической обработки: закалка + обработка холодом и отпуск обладает высокими механическими свойствами: σв = 180-190 кгс/мм2; σ0,2 = 142-150 кгс/мм2; δ= 18-20%; ψ=52-60%; аv=6-10 кгсм/см2 (rн=0,25 мм) (патент РФ 2164546).

Также известны высокопрочные коррозионно-стойкие стали, упрочняемые азотом, следующего химического состава, мас.%:
Углерод - 0,12-0,5
Хром - 14,0-18,0
Молибден - 0,5-3,0
Никель - 0,3-2,0
Вольфрам - 0,5-3,0
Ванадий - 0,2-1,0
Азот - До 0,3
Железо - Остальное (патент Германии 4212966)
Углерод - 0,15-0,50
Медь - 1,0-3,0
Хром - 13,0-17,0
Кремний - До 0,5
Марганец - До 2,0
Азот - 0,02-0,1
Железо - Остальное (патент США 4450006)
Углерод - ≤0,1
Хром - 12,0-18,0
Никель - 4,0-8,0
Кремний - 1,0-3,0
Азот - ≤0,15
Медь - 0,5-3,5
Железо - Остальное (патент Японии 61-295356).

Все известные стали обладают достаточно высокими пределами прочности, но низкими значениями вязкости и пластичности. Кроме того, сталь по патенту Японии имеет ограниченное применение, т.к. предназначена только в качестве листового материала.

Изделия, выполненные из этих сталей, могут использоваться в машиностроении в качестве коррозионно-стойких конструкционных деталей. Для изделий авиационной техники они имеют недостаточный уровень прочности, пластичности и вязкости.

Наиболее близкой по химическому составу к предлагаемой стали является коррозионно-стойкая сталь 05Х16НЗАБ, принятая за прототип.

Сталь имеет следующий химический состав, мас.%:
Углерод - 0,03-0,07
Хром - 15-16,5
Никель - 2,5-4,0
Азот - 0,12-0,18
Ниобий - 0,05-0,10
Кальций - 0,01-0,03
Железо - Остальное (патент РФ 2052532).

Сталь предназначена для высоконагруженных деталей в машиностроении и судостроении.

Однако эта сталь обладает недостаточной прочностью σв = 1550-1640 МПа, ударной вязкостью и коррозионной стойкостью.

Технической задачей настоящего изобретения является создание экономно-легированной высокопрочной коррозионно-стойкая нестойкой стали с высокой прочностью, пластичностью, вязкостью и коррозионной стойкостью, обеспечивающей высокую надежность изделий, выполняемых из этой стали.

Для достижения поставленной задачи предложена высокопрочная коррозионно-стойкая сталь, содержащая железо, углерод, хром, никель, ниобий, азот, кальций, отличающаяся тем, что она дополнительно содержит молибден, марганец, медь, кремний, ванадий, барий при следующем соотношении компонентов, мас.%:
Углерод - 0,08-0,12
Хром - 13,5-14,5
Никель - 3,5-4,5
Азот - 0,15-0,20
Молибден - 2-2,5
Марганец - 1-1,5
Ванадий - 0,03-0,05
Ниобий - 0,03-0,05
Кремний - 0,1-0,3
Медь - 0,3-0,8
Кальций - 0,01-0,03
Барий - 0,01-0,03
Железо - Остальное
причем ∑V+Nb≤0,l%.

При этом соотношение компонентов, определяющее фазовый состав стали, определяется следующими равенствами:
Км=Сr+Мо+1,5Ni+30(C+N)+0,7(Mn+Si)=29,8-33,1
Кф=Сr+Мо+2Si-{l,5Ni+30(C+N)+0,7Mn}=1,5-1,7
где Км - эквивалент мартенситообразования;
Кф - эквивалент ферритообразования.

Подобранное соотношение компонентов позволяет получить стабильную структуру стали с заданным соотношением мартенсита и аустенита, не содержащей дельта-феррита, что позволяет обеспечить высокий уровень механических и коррозионных свойств стали и изделия, выполненного из нее.

Наличие в стали указанных концентраций углерода и азота необходимо для обеспечения высокой прочности.

При содержании С или N более 0,12 и 0,2% соответственно трудно получить удовлетворительные показатели пластичности и ударной вязкости, а также получить качественный металл без пористости из-за ограниченной растворимости азота в стали.

Введение в сталь 13,5...14,5% Сr обусловлено обеспечением требуемой коррозионной стойкости и повышенной растворимости азота.

При концентрации хрома более 14,5% и никеля менее 3,5% сталь будет иметь пониженную вязкость, особенно при отрицательных температурах, из-за появления в структуре дельта-феррита и образования труднорастворимых при закалке карбонитридов, а также из-за повышения температуры вязкохрупкого перехода. С увеличением содержания никеля более 4,5% снижается растворимость азота в стали.

Марганец в количестве 1...1,5% вводится в сталь для повышения растворимости азота. Увеличение содержания марганца приводит к повышению количества остаточного аустенита и тем самым к снижению прочностных характеристик.

Добавки ванадия и ниобия в количестве до 0,05% каждого обеспечивают получение мелкозернистой структуры. Увеличение суммарного содержания ванадия и ниобия более 0,1% приводит к снижению прочности из-за обеднения твердого раствора азотом в результате образования нитридов.

Легирование молибденом 2...2,5% повышает растворимость азота и тормозит образование карбонитридов по границам зерен и тем самым повышает ударную вязкость стали. Дополнительное легирование барием позволяет изменить форму сульфидов на глобулярную.

Легирование медью 0,3...0,8% позволяет исключить в микроструктуре стали дельта-феррит, а также повысить прочность при старении.

Пример осуществления.

В лабораторных условиях в открытой печи с последующим электрошлаковым переплавом были произведены плавки предложенного химического состава (табл. 1).

Сталь после термообработки по оптимальному режиму: закалка + обработка холодом + отпуск обладает следующими механическими свойствами (табл.2):
предел прочности σв = 1800-1850 МПa;
предел текучести σ0,2 = 1400-1450 МПa;
относительное удлинение δ5 = 16-20%;
относительное сужение ψ=60-65%;
ударная вязкость kcv+20(rн=0,25мм)=60-80 Дж/см2.

Сталь обладает высоким сопротивлением коррозионному растрескиванию: при приложенном напряжении изгиба σ=1000 МПа сталь выдерживает без разрушения более шести месяцев в камере соляного тумана 5% NaCl, t=35oС (КСТ-35).

По сравнению с известной сталью (прототип) предложенная сталь обладает более высокими механическими свойствами: предел прочности (σв) выше на 210-250 МПа, значения ударной вязкости (KCV) выше более чем в 2,5 раза и высокой коррозионной стойкостью.

Таким образом, применение предложенной стали позволит снизить вес тяжелонагруженных деталей, эксплуатирующихся во всеклиматических условиях и обеспечить стабильные и высокие характеристики надежности самолетов нового поколения.

Похожие патенты RU2214474C2

название год авторы номер документа
КОРРОЗИОННОСТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЁ 2002
  • Каблов Е.Н.
  • Шалькевич А.Б.
  • Кривоногов Г.С.
  • Самченко Н.А.
  • Рыльников В.С.
  • Старова Л.Л.
RU2221895C1
ВЫСОКОПРОЧНАЯ ПОРОШКОВАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2020
  • Каблов Евгений Николаевич
  • Неруш Святослав Васильевич
  • Тонышева Ольга Александровна
  • Мазалов Павел Борисович
  • Крылов Сергей Алексеевич
  • Богачев Игорь Александрович
RU2751064C1
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ ДЛЯ ТРУБОПРОВОДОВ 2001
  • Азбукин В.Г.
  • Башаева Е.Н.
  • Павлов В.Н.
  • Карзов Г.П.
  • Филимонов Г.Н.
  • Бережко Б.И.
  • Осипова И.С.
  • Минченко Н.А.
  • Крылова Р.П.
  • Хохлов А.А.
  • Кудрявцева И.В.
  • Попов О.Г.
RU2188874C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2000
  • Петров Ю.Н.
  • Хомякова Н.Ф.
  • Мурунов А.И.
  • Таволжанов А.Н.
  • Левин В.Г.
RU2184793C2
ВЫСОКОПРОЧНАЯ БЕРИЛЛИЙСОДЕРЖАЩАЯ СТАЛЬ 2015
  • Каблов Евгений Николаевич
  • Щербаков Анатолий Иванович
  • Евгенов Александр Геннадьевич
  • Семионов Евгений Николаевич
  • Мосолов Алексей Николаевич
RU2600467C1
ВЫСОКОПРОЧНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 1995
  • Вознесенская Н.М.
  • Бирман С.И.
  • Шалькевич А.Б.
  • Петраков А.Ф.
  • Балтаджи А.В.
  • Померанцева С.И.
  • Сысоева И.Б.
  • Батурина А.В.
  • Воронин Г.Ф.
  • Варганов В.А.
  • Петровичев Н.П.
  • Степанов В.П.
RU2077602C1
СОСТАВ СВАРОЧНОЙ ПРОВОЛОКИ 2002
  • Старова Л.Л.
  • Борисов М.Т.
  • Лукин В.И.
  • Максимович Т.Л.
  • Ковальчук В.Г.
  • Голев Е.В.
RU2217283C1
ЖАРОПРОЧНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ 2013
  • Орыщенко Алексей Сергеевич
  • Карзов Георгий Павлович
  • Кудрявцев Алексей Сергеевич
  • Марков Вадим Георгиевич
  • Трапезников Юрий Михайлович
  • Артемьева Дарина Александровна
  • Охапкин Кирилл Алексеевич
RU2543583C2
ДВУХСЛОЙНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2001
  • Карзов Г.П.
  • Марков В.Г.
  • Яковлев В.А.
  • Драгунов Ю.Г.
  • Степанов В.С.
  • Третьяков Н.В.
RU2206632C2
Способ производства горячекатаной высокопрочной коррозионно-стойкой стали 2015
  • Удод Кирилл Анатольевич
  • Родионова Ирина Гавриловна
  • Бакланова Ольга Николаевна
  • Князев Андрей Вадимович
  • Стукалин Станислав Викторович
  • Клячко Маргарита Абрамовна
RU2615426C1

Иллюстрации к изобретению RU 2 214 474 C2

Реферат патента 2003 года ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ

Изобретение относится к металлургии, а именно к разработке высокопрочной коррозионно-стойкой стали аустенитно-мартенситного класса, упрочняемой азотом, предназначенной для изготовления высоконагруженных деталей машин, в частности самолетов, работающих при температуре от минус 70 до 300oС в любых климатических условиях. Предложена высокопрочная коррозионно-стойкая сталь, содержащая компоненты в следующем соотношении, мас.%: углерод 0,08-0,12; хром 13,5-14,5; никель 3,5-4,5; азот 0,15-0,20; молибден 2-2,5; марганец 1-1,5; ванадий 0,03-0,05; ниобий 0,03-0,05; кремний 0,1-0,3; медь 0,3-0,8; кальций 0,01-0,03; барий 0,01-0,03; железо остальное. Техническим результатом изобретения является повышение механических свойств. Предел прочности составляет 1800-1850 МПа, предел текучести 1400-1450 МПа, относительное удлинение 16-20%, ударная вязкость 60-80 Дж/см2. Сталь обладает повышенным сопротивлением коррозионному растрескиванию и выдерживает без разрушения более шести месяцев в камере соляного тумана 5% NaCl при 35oС при приложенном напряжении изгиба 1000 МПа. 2 с. и 1 з.п.ф-лы, 2 табл.

Формула изобретения RU 2 214 474 C2

1. Высокопрочная коррозионно-стойкая сталь, содержащая железо, углерод, хром, никель, ниобий, кремний, азот, кальций, отличающаяся тем, что она дополнительно содержит молибден, марганец, медь, ванадий и барий при следующем соотношении компонентов, мас.%:
Углерод - 0,08-0,12
Хром - 13,5-14,5
Никель - 3,5-4,5
Азот - 0,15-0,20
Молибден - 2-2,5
Марганец - 1-1,5
Ванадий - 0,03-0,05
Ниобий - 0,03-0,05
Кремний - 0,1-0,3
Медь - 0,3-0,8
Кальций - 0,01-0,03
Барий - 0,01-0,03
Железо - Остальное
2. Сталь по п.1, отличающаяся тем, что соотношение компонентов, определяющих фазовый состав стали, характеризуется следующими равенствами:
Км=Сr+Мо+1,5Ni+30(C+N)+0,7(Mn+Si)=29,8÷33,1,
Кф=Cr+Мо+2Si-{l,5Ni+30(C+N)+0,7Mn}=1,5÷1,7,
где Км - эквивалент мартенситообразования;
Кф - эквивалент ферритообразования.
3. Изделие из высокопрочной коррозионно-стойкой стали, отличающееся тем, что оно выполнено из стали при следующем соотношении компонентов, мас.%:
Углерод - 0,08-0,12
Хром - 13,5-14,5
Никель - 3,5-4,5
Азот - 0,15-0,20
Молибден - 2-2,5
Марганец - 1-1,5
Ванадий - 0,03-0,05
Ниобий - 0,03-0,05
Кремний - 0,1-0,3
Медь - 0,3-0,8
Кальций - 0,01-0,03
Барий - 0,01-0,03
Железо - Остальноез

Документы, цитированные в отчете о поиске Патент 2003 года RU2214474C2

RU 2052532 С1, 20.01.1996
ВЫСОКОПРОЧНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ АУСТЕНИТНО-МАРТЕНСИТНОГО КЛАССА 1999
  • Вознесенская Н.М.
  • Каблов Е.Н.
  • Шалькевич А.Б.
  • Петраков А.Ф.
  • Воронин Г.Ф.
  • Будский Е.В.
RU2164546C2
КОРРОЗИОННОСТОЙКАЯ ЛИТЕЙНАЯ СТАЛЬ 1998
  • Новиков В.И.
  • Пестов Ю.А.
  • Семенов В.Н.
  • Дмитриев В.В.
  • Деркач Г.Г.
  • Мовчан Ю.В.
  • Каторгин Б.И.
  • Чванов В.К.
  • Громыко Б.М.
  • Головченко С.С.
  • Каблов Е.Н.
  • Петраков А.Ф.
  • Еланский Г.Н.
  • Сосонкин О.М.
  • Савченко Е.Г.
  • Большаков В.Б.
RU2169788C2
Коррозионностойкая сталь 1979
  • Голованенко Сергей Александрович
  • Писаревский Лев Александрович
  • Мелькумов Игнат Николаевич
  • Пивоварова Людмила Ивановна
  • Рольщиков Леонид Дмитриевич
  • Терских Станислав Алексеевич
  • Крымчанский Исаак Израилевич
  • Белалов Хасан Нуриевич
  • Кощиц Иван Николаевич
SU834223A1
0
SU394454A1
DE 4212966 А1, 21.10.1993
US 4450006, 22.05.1984
Устройство для сортировки каменного угля 1921
  • Фоняков А.П.
SU61A1

RU 2 214 474 C2

Авторы

Каблов Е.Н.

Шалькевич А.Б.

Вознесенская Н.М.

Банных О.А.

Блинов В.М.

Костина М.В.

Буцкий Е.В.

Даты

2003-10-20Публикация

2001-11-27Подача