СПОСОБ ТЕМПЕРАТУРНОЙ КОРРЕКЦИИ БЛОКА АКСЕЛЕРОМЕТРОВ В ПРОЦЕССЕ БУРЕНИЯ Российский патент 2004 года по МПК E21B47/22 G01C19/00 

Описание патента на изобретение RU2243373C2

Изобретение относится к буровой измерительной технике, в частности к средствам контроля забойных параметров при бурении и геофизических исследованиях скважины.

Известен способ определения изменения параметров компенсационного акселерометра, включающий испытание акселерометра в термокамере при двух его положениях: начальном и повернутом на 180° от начального положения. При каждом положении проводят два цикла измерений, один - при температуре t1°C, другой - при температуре t2°С. В каждом цикле измеряют выходной сигнал акселерометра в исходном его положении, поворачивают акселерометр на некоторый угол, измеряют выходной сигнал, затем поворачивают акселерометр на некоторый угол в другую сторону, опять измеряют выходной сигнал, разворачивают акселерометр относительно оси подвеса, после чего цикл измерений повторяют. Из соотношений измеренных в каждом цикле величин по расчетным зависимостям определяют параметры акселерометра по всем четырем циклам испытаний (см. а.с. СССР №1755205 кл. G 01 Р 21/00 опубл. 1992 г.).

Недостаток этого способа заключается в том, что для некоторых типов акселерометров, которые используются в телеметрических системах и инклинометрах и имеют выходную характеристику при температурных воздействиях существенно нелинейного характера, а также значительное смещение нуля, необходим большой объем лабораторных испытаний акселерометров в термокамерах для учета погрешности выходного напряжения акселерометра.

Кроме того, отсутствуют общий контроль за температурной погрешностью блока, состоящего из трех ортогонально расположенных акселерометров после температурной коррекции каждого акселерометра, и технология уменьшения этой погрешности в процессе эксплуатации блока акселерометров.

Наиболее близким способом температурной коррекции к заявленному является способ температурной коррекции инклинометрических углов, предназначенный для контроля за траекторией ствола скважины или за положением бурильного инструмента при бурении скважины, основанный на измерении ускорений и проекций угловой скорости по трем взаимно перпендикулярным осям при помощи трех одноосных акселерометров и двух трехстепенных гироскопов, усилении выходных сигналов гироскопов, преобразовании их в код, коррекции этих сигналов в зависимости от температуры внутри корпуса инклинометра, определении величины инклинометрических углов при помощи вычислителя, размещенного в корпусе инклинометра, и передачи на поверхность Земли по каналу связи (см., например: патент RU №2101487 кл. Е 21 В 47/022 опубл. 1998 г.).

Недостаток этого способа заключается в отсутствии контроля за погрешностью температурной коррекции, возникающей при измерении во время бурения или исследованиях скважины, когда температура в скважине может меняться в некоторых пределах от точки к точке замера или в течение времени, и в отсутствии технологии уменьшения этой погрешности при необходимости.

Целью изобретения является повышение точности температурной коррекции выходных сигналов акселерометров в процессе бурения за счет постоянного контроля за температурой совместно с постоянным контролем за модулем вектора ускорения силы тяжести при сокращении времени температурных испытаний в термокамерах.

Поставленная цель достигается тем, что в способе температурной коррекции блока акселерометров в процессе бурения, основанном на измерении в заданных точках траектории скважины проекций ускорения силы тяжести на три взаимно перпендикулярные оси, измерении температуры блока акселерометров и коррекции выходных сигналов акселерометров с помощью температурных коэффициентов, полученных экспериментально для ряда значений температур из температурного диапазона эксплуатации акселерометров, определяют в нормальных условиях модуль вектора ускорения, задают допуск погрешности, соответствующий требуемой точности определения модуля вектора ускорения, рассчитывают модуль вектора ускорения по скорректированным с учетом температурных коэффициентов выходным сигналам акселерометров, сравнивают последний с модулем вектора ускорения, полученным в нормальных условиях, и в случае неравенства сравниваемых величин осуществляют одновременно для всех акселерометров поиск температурных коэффициентов из ряда значений температурных коэффициентов, полученных экспериментально, до равенства сравниваемых величин с точностью определяемой заданным допуском погрешности. На чертеже представлена блок-схема устройства, реализующего данный способ.

Блок схема включает: блок 1 акселерометров, в котором размещены сами акселерометры 2, 3, 4, и датчик 5 температуры, блок 6 температурной коррекции выходных сигналов акселерометров, блок 7 формирования модуля вектора ускорения |Gt|, блок 8 сравнения модуля вектора ускорения |Gt| с модулем вектора, полученным в нормальных условиях |G|, блок 9 управления циклом формирования коррекции температурной погрешности.

Для реализации данного способа в лабораторных условиях в термокамере измеряют выходные сигналы акселерометров 2, 3 и 4 при изменении с малым шагом температуры во всем заданном диапазоне, фиксируя показания датчика 5 температуры в блоке акселерометров 1. При минимальной выдержке блока акселерометров 1 при данной температуре определяют коэффициенты коррекции выходных сигналов акселерометров. Затем в процессе бурения или исследования скважины измеряют выходные сигналы акселерометров 2, 3, 4 датчика 5 температуры, и по измеренной температуре блока 1 акселерометров определяют в блоке 6 температурной коррекции с помощью заранее определенных температурных коэффициентов скорректированные выходные сигналы акселерометров Gxt, Gyt, Gzt. По этим значениям в блоке 7 рассчитывают модуль вектора ускорения силы тяжести |Gt|

В блоке 8 сравнивают величину модуля скорректированного вектора ускорения |Gt| с величиной модуля вектора ускорения |G|, определенной в нормальных условиях без коррекции. Если разница этих величин меньше заданной, то скорректированные сигналы считаются истинными, если этого не происходит, то блок 9 управления дает команду в блок 6 температурной коррекции на изменение коэффициентов температурной коррекции для всех трех акселерометров 2, 3 и 4 соответственно, а выбор их величин происходит последовательно цикл за циклом из ряда значений для температур и температурных коэффициентов соответственно, определенных в лабораторных условиях, до тех пор пока не станут |Gt|≅ |G|, тогда скорректированные сигналы будут считаться истинными.

Таким образом, использование постоянного контроля за температурой вместе с постоянным контролем за модулем вектора ускорения позволяет уменьшить время и стоимость температурных испытаний, повысить точность измерения выходных сигналов акселерометров при бурении и исследовании скважин, особенно в условиях нестабильности температуры окружающей среды.

Похожие патенты RU2243373C2

название год авторы номер документа
ИНКЛИНОМЕТР 2006
  • Конаныхин Илья Владимирович
  • Сокирский Григорий Степанович
  • Ширманов Михаил Иванович
  • Удовиченко Анатолий Иванович
RU2348008C2
СПОСОБ ПОВЫШЕНИЯ ВИБРОУСТОЙЧИВОСТИ ИНКЛИНОМЕТРА 2013
  • Сокирский Григорий Степанович
  • Ширманов Михаил Иванович
  • Удовиченко Анатолий Иванович
  • Дьякович Владимир Богданович
RU2534866C1
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ 2012
  • Заико Александр Иванович
  • Иванова Галина Алексеевна
RU2503810C1
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ОРИЕНТАЦИИ СКВАЖИНЫ И ИНКЛИНОМЕТР 2003
  • Лапшинов К.Н.
  • Исаев Ю.К.
  • Павельев А.М.
  • Сизов И.В.
RU2253838C2
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВОЙ ОРИЕНТАЦИИ СКВАЖИН ГИРОСКОПИЧЕСКИМ ИНКЛИНОМЕТРОМ 2008
  • Белов Евгений Федорович
  • Белов Максим Евгеньевич
RU2387828C1
БЕСКАРДАННЫЙ ГИРОСКОПИЧЕСКИЙ ИНКЛИНОМЕТР И СПОСОБ ВЫРАБОТКИ ИНКЛИНОМЕТРИЧЕСКИХ УГЛОВ 1994
  • Андрианов Ю.М.
  • Богомолов О.Д.
  • Вечтомов В.М.
  • Герасимов Н.В.
  • Люсин Ю.Б.
  • Пензин Л.И.
  • Пуляевский Г.Г.
  • Сабаев В.Ф.
  • Саенко В.А.
  • Чичинадзе М.В.
  • Шульман И.Ш.
RU2101487C1
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВОЙ ОРИЕНТАЦИИ СКВАЖИНЫ 2014
  • Дмитрюков Алексей Юрьевич
RU2567064C1
СПОСОБ И СИСТЕМА БУРЕНИЯ С АВТОМАТИЧЕСКИМ УТОЧНЕНИЕМ ТОЧЕК МАРШРУТА ИЛИ ТРАССЫ СТВОЛА СКВАЖИНЫ НА ОСНОВАНИИ КОРРЕКТИРОВКИ ДАННЫХ ИНКЛИНОМЕТРИИ 2014
  • Дирксен Рональд Йоханнес
  • Митчелл Айан Дэвид Кэмпбелл
  • Госни Джон Трой
RU2657033C2
ГИРОСКОПИЧЕСКИЙ ИНКЛИНОМЕТР И СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВОЙ ОРИЕНТАЦИИ СКВАЖИН 2005
  • Белов Евгений Федорович
  • Белов Максим Евгеньевич
  • Носиков Максим Владимирович
  • Саган Илья Анатольевич
RU2282717C1
СИСТЕМА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ РАЗВЕДОЧНЫХ СКВАЖИН 1996
  • Никишин В.Б.
  • Плотников П.К.
  • Мельников А.В.
RU2109942C1

Реферат патента 2004 года СПОСОБ ТЕМПЕРАТУРНОЙ КОРРЕКЦИИ БЛОКА АКСЕЛЕРОМЕТРОВ В ПРОЦЕССЕ БУРЕНИЯ

Изобретение относится к буровой измерительной технике, в частности к средствам контроля забойных параметров при бурении и геофизических исследованиях скважины. Техническим результатом изобретения является повышение точности температурной коррекции (ТК) выходных сигналов акселерометров в процессе бурения за счет постоянного контроля за температурой совместно с постоянным контролем за модулем вектора ускорения (МВУ) силы тяжести при сокращении времени температурных испытаний в термокамерах. Для этого в лабораторных условиях в термокамере измеряют выходные сигналы акселерометров и определяют коэффициенты их ТК. Затем в процессе бурения или исследования скважины измеряют выходные сигналы акселерометров и датчика температуры и определяют скорректированные выходные сигналы акселерометров Gxt, Gyt и Gzt. По этим значениям рассчитывают МВУ силы тяжести , сравнивают его с величиной МВУ |G|, определенной в нормальных условиях без коррекции. Если разница этих величин меньше заданной, то скорректированные сигналы считаются истинными. Если этого не происходит, то последовательно изменяют коэффициенты ТК для всех трех акселерометров соответственно, до тех пор пока не станет |Gt|≅|G|, тогда скорректированные сигналы будут считаться истинными. 1 ил.

Формула изобретения RU 2 243 373 C2

Способ температурной коррекции блока акселерометров в процессе бурения, основанный на измерении в заданных точках траектории скважины проекций ускорения силы тяжести на три взаимно перпендикулярные оси, измерении температуры блока акселерометров и коррекции выходных сигналов акселерометров с помощью температурных коэффициентов, полученных экспериментально для ряда значений температур из температурного диапазона эксплуатации акселерометров, отличающийся тем, что определяют в нормальных условиях модуль вектора ускорения, задают допуск погрешности, соответствующий требуемой точности определения модуля вектора ускорения, рассчитывают модуль вектора ускорения по скорректированным с учетом температурных коэффициентов выходным сигналам акселерометров, сравнивают последний с модулем вектора ускорения, полученным в нормальных условиях, и в случае неравенства сравниваемых величин осуществляют одновременно для всех акселерометров поиск температурных коэффициентов из ряда значений температурных коэффициентов, полученных экспериментально до равенства сравниваемых величин с точностью, определяемой заданным допуском погрешности.

Документы, цитированные в отчете о поиске Патент 2004 года RU2243373C2

БЕСКАРДАННЫЙ ГИРОСКОПИЧЕСКИЙ ИНКЛИНОМЕТР И СПОСОБ ВЫРАБОТКИ ИНКЛИНОМЕТРИЧЕСКИХ УГЛОВ 1994
  • Андрианов Ю.М.
  • Богомолов О.Д.
  • Вечтомов В.М.
  • Герасимов Н.В.
  • Люсин Ю.Б.
  • Пензин Л.И.
  • Пуляевский Г.Г.
  • Сабаев В.Ф.
  • Саенко В.А.
  • Чичинадзе М.В.
  • Шульман И.Ш.
RU2101487C1
СПОСОБ КОМПЕНСАЦИИ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ КОМПЕНСАЦИОННОГО АКСЕЛЕРОМЕТРА 1990
  • Баженов В.И.
  • Брищук А.Т.
SU1785345A1
Способ определения изменения параметров маятникового поплавкового компенсационного акселерометра 1990
  • Макаров Виктор Юрьевич
  • Кербер Виктория Ивановна
  • Юрасов Владислав Владимирович
SU1755205A1
СПОСОБ ОПРЕДЕЛЕНИЯ АЗИМУТА И ЗЕНИТНОГО УГЛА СКВАЖИНЫ И ГИРОСКОПИЧЕСКИЙ ИНКЛИНОМЕТР 1996
  • Порубилкин Е.А.
  • Лосев В.В.
  • Павельев А.М.
  • Пантелеев В.И.
  • Фрейман В.С.
  • Кривошеев С.В.
RU2100594C1
КОМПЕНСАЦИОННЫЙ АКСЕЛЕРОМЕТР 1997
  • Баженов В.И.
  • Вдовенко И.В.
  • Горбачев Н.А.
  • Ефанов А.А.
  • Лабин В.Ф.
  • Рязанов В.А.
  • Соловьев В.М.
RU2121694C1
СПОСОБ ОПРЕДЕЛЕНИЯ АЗИМУТА И ЗЕНИТНОГО УГЛА СКВАЖИНЫ И ГИРОСКОПИЧЕСКИЙ ИНКЛИНОМЕТР 1999
  • Дьяченко С.П.
  • Кожин В.В.
  • Лещев В.Т.
  • Лосев В.В.
  • Павельев А.М.
  • Пантелеев В.И.
  • Фрейман Э.В.
RU2159331C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ 2000
  • Ковшов Г.Н.
  • Коловертнов Г.Ю.
  • Коловертнов Ю.Д.
  • Федоров С.Н.
RU2166084C1
US 4163324 A, 07.08.1979
US 4987684 A, 29.01.1991
ПРОЗРАЧНАЯ И ГИБКАЯ КОМПОЗИЦИЯ ПРОПИЛЕНОВЫХ ПОЛИМЕРОВ И ИЗДЕЛИЕ, ПОЛУЧЕННОЕ ИЗ НЕЕ 2002
  • Пелликони Антео
  • Лонардо Анджело
  • Мей Габриеле
RU2296772C2
СПОСОБ ОЦЕНКИ ВЫНОСЛИВОСТИ СПОРТСМЕНА В ИГРОВЫХ ВИДАХ СПОРТА 2016
  • Афоньшин Владимир Евгеньевич
RU2615899C1
DE 3135743 A, 06.05.1982
Машина для формования железобетонных тонкостенных пространственных криволинейных покрытий сводов двойной кривизны 1957
  • Бузницкий Е.В.
  • Дегтяр Э.М.
  • Фельдшон З.Д.
  • Цейтлин А.А.
SU109830A1

RU 2 243 373 C2

Авторы

Скобло В.З.

Ропяной А.Ю.

Карелин В.Ю.

Даты

2004-12-27Публикация

2002-02-26Подача