СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КРУПНОГАБАРИТНЫХ ИЗДЕЛИЙ Российский патент 2006 года по МПК C21D1/25 C21D1/56 

Описание патента на изобретение RU2277593C1

Изобретение относится к области упрочняющей термической обработки крупногабаритных изделий типа соединительных деталей трубопроводов или толстостенных труб большого диаметра из малоуглеродистых и низколегированных сталей.

Известен способ упрочняющей термической обработки труб путем их нагрева в проходных секционных печах до заданной температуры и охлаждения диспергированной водой или водовоздушной смесью при их выходе из печи в спрейерах с последующим отпуском в проходных секционных печах при температуре 550÷650°С (см. Термическое упрочнение проката / под ред. К.Ф.Стародубова, М., «Металлургия», 1970, с.170).

Недостатком этого способа является невозможность получения металла с требуемой бейнитной или феррито-бейнитной структурой для изделий толщиной от 25-30 мм и выше из-за ограниченной скорости охлаждения металла. Кроме того, соединительные детали трубопроводов, имеющие разнообразную форму, невозможно, подобно трубам, нагреть в секционных печах и охладить в спрейерах в проходном режиме, когда транспортировка осуществляется косовалковыми рольгангами с одновременным вращением изделий.

Наиболее близким по технической сущности, достигаемому эффекту и выбранным в качестве прототипа является способ термической обработки крупногабаритных изделий из низко-, средне- и высокоуглеродистых легированных и высоколегированных сталей, включающий нагрев, выдержку и охлаждение в три стадии и отпуск. На первой стадии изделие охлаждают погружением в воду до температуры поверхности изделия 150°С. На второй стадии производят отогрев изделия, т.е. выдерживают его на воздухе до разогрева поверхности металла до 500÷550°С, а затем повторно погружают в воду и т.д., т.е. производят купание до тех пор, пока температура поднятого на воздух изделия не будет составлять 350÷400°С. Затем проводят охлаждение в масле, на воздухе, прерывистым купанием (см. Обзорную информацию ЦИНТИХИМНЕФТЕМАШ / серия ХМ-9. Технология химического и нефтяного машиностроения и новые материалы. Прогрессивные методы термической и химико-термической обработки в химическом машиностроении., М., 1982, с.5).

Ускоренное охлаждение в воде до температуры поверхности изделия 150°С на первой стадии охлаждения приводит к возникновению градиента температур по сечению стенки изделия, что вызывает высокий уровень термических напряжений, способный привести не только к короблению деталей, но даже к образованию микротрещин в металле. Кроме того, осуществление режима купания изделия, контролируемого только по температуре, приобретаемой изделием после купания, приводит к невозможности обеспечения равномерного протекания процессов структуро- и карбидообразования.

Таким образом, недостатком способа-прототипа является отсутствие надежных критериев для выбора параметров упрочняющей термообработки изделия. Это не позволяет обеспечить высокий уровень механических свойств, снизить уровень остаточных напряжений и коробления торцов изделий.

Задачей настоящего изобретения является обеспечение равномерности протекания процессов структуро- и карбидообразования в изделиях для обеспечения высокого уровня механических свойств, снижения уровня остаточных напряжений в металле и коробления торцов изделий.

Техническим результатом, получаемым при реализации данного изобретения, является оптимизация параметров обработки.

Указанная задача решается за счет того, что в известном способе термической обработки крупногабаритных изделий, включающем нагрев, выдержку, охлаждение в несколько стадий и отпуск, при котором охлаждение на первой стадии ведут погружением в закалочную среду, после чего осуществляют отогрев изделий, а охлаждение на последней стадии ведут на воздухе, согласно изобретению охлаждение на первой стадии ведут до температуры поверхности металла не ниже 180°С в циркулирующей закалочной среде, после отогрева изделий проводят их изотермическую выдержку и/или замедленное охлаждение при температуре металла, обеспечивающей пересечение кривой охлаждения области структурного превращения аустенита в бейнит, по крайней мере, на 2/3 протяженности этой области, после чего охлаждение ведут до температуры металла не ниже 200°С со скоростью, предотвращающей для данной марки стали выделение атомов внедрения из пересыщенного твердого раствора, причем отогрев изделий ведут до температуры не выше температуры, при которой проводят изотермическую выдержку и/или замедленное охлаждение.

Отогрев изделий, изотермическую выдержку и/или замедленное охлаждение и охлаждение после изотермической выдержки и/или замедленного охлаждения могут быть проведены путем купания в спокойной или циркулирующей закалочной среде, причем скорость циркуляции среды в течение купания может быть сохранена постоянной или замедлена к концу купания.

Скорость циркуляции закалочной среды может быть изменена посредством изменения мощности двигателя, создающего направленный поток среды, причем охлаждение на первой стадии может быть проведено при максимальной мощности двигателя, отогрев - при мощности двигателя 0,1÷0,7 от максимальной мощности, изотермическая выдержка и/или замедленное охлаждение - при мощности двигателя 0,1÷0,9 от максимальной мощности, а охлаждение после изотермической выдержки и/или замедленного охлаждения - при мощности двигателя 0,1÷0,7 от максимальной мощности.

Исследования, проведенные по источникам патентной и научно-технической информации, показали, что заявляемый способ неизвестен и не следует явным образом из изученного уровня техники, т.е. соответствует критериям новизна и изобретательский уровень.

Способ может быть осуществлен на любом предприятии, специализирующемся в данной отрасли, т.к. для этого требуются известные материалы и стандартное оборудование, и широко использован при проведении термообработки металлоизделий, т.е. является промышленно применимым.

Для получения в металле готовых изделий большого количества дисперсных частиц вторичной фазы (карбидов, карбонитритов), равномерно распределенных в матрице, необходимо ускоренно охлаждать изделие из однородного аустенитного состояния со скоростью, достаточной для предотвращения выделения растворенных атомов внедрения (углерода и азота) из твердого раствора. При этом важную роль в создании пересыщенного твердого раствора, в котором подавлен процесс выделения углерода и азота на стадии охлаждения, играет температура конца ускоренного охлаждения. Это связано с тем, что указанные элементы даже при пониженных температурах металла имеют значительную диффузионную способность. Интенсивная циркуляция закалочной среды на первой стадии охлаждения позволяет эффективно управлять скоростью охлаждения изделия и провести выравнивание температурного поля металла по сечению стенки изделия до момента вхождения кривой охлаждения в область бейнитного распада аустенита. Это, в свою очередь, обеспечивает пересечение этой области кривой охлаждения, по крайней мере, на 2/3 ее протяженности (в соответствии с термокинетической диаграммой для конкретной марки стали). Экспериментально установлено, что заявляемые оптимально подобранные температурные интервалы и параметры циркуляции закалочной среды позволяют получить феррито-бейнитную или бейнитную структуру металла за счет обеспечения равномерного протекания процессов структуро- и карбидообразования. Это обеспечивает достижение высокого уровня механических свойств металла изделий, снижает уровень остаточных напряжений и коробление торцов изделий.

Предлагаемый способ термической обработки крупногабаритных изделий был опробован в промышленных условиях при упрочнении соединительных деталей трубопроводов, а именно штампосварных тройников диаметром 1020 мм с толщиной стенки 28 мм, изготовленных из стали 10Г2ФБЮ. В идентичных условиях был опробован способ-прототип.

Термообрабатываемые изделия нагревали в печи до 950÷980°С, выдерживали при этой температуре и затем осуществляли охлаждение. Характеристики охлаждения и полученные свойства металла представлены в таблице 1.

Измерения для определения степени коробления тройника были проведены после различных режимов (характеристики режимов приведены в таблице 1) обработки. Результаты измерения для определения степени коробления изделий по заявленному способу и способу-прототипу приведены в таблице 2.

Изобретение поясняется чертежами, на которых представлены:

Фиг.1. Вид спереди (со стороны торца) на соединительную деталь трубопровода - тройник /показано положение мест измерения диаметра торца тройника/.

Фиг.2 Кривая охлаждения по предлагаемому способу: охлаждение по режиму 2 (характеристика режима приведена таблице 1) для штампосварного тройника диаметром 1020 мм с толщиной стенки 28 мм из стали марки 10Г2ФБЮ (латинскими цифрами обозначены стадии охлаждения).

Анализ данных, приведенных в таблицах, показывает, что предлагаемый способ позволяет повысить по сравнению с прототипом комплекс механических свойств изделий, снизить уровень остаточных напряжений в металле и коробление торцов изделий.

Данный способ позволяет также повысить устойчивость металла к разупрочнению при последующих нагревах (например, при отпуске и сварке).

Похожие патенты RU2277593C1

название год авторы номер документа
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КРУПНОГАБАРИТНЫХ ИЗДЕЛИЙ 2004
  • Недоспасов Л.А.
  • Помазан А.А.
  • Лежнин К.В.
  • Пуйко А.В.
  • Немцев С.А.
  • Рязанцев Ю.М.
  • Щавлева Л.А.
  • Дейнеко Леонид Николаевич
  • Величко Александр Григорьевич
  • Большаков Владимир Иванович
  • Волкова Алла Сергеевна
RU2265066C2
Способ термической обработки крупногабаритных изделий 1988
  • Большаков Владимир Иванович
  • Дейнеко Леонид Николаевич
  • Дробязко Владимир Алексеевич
  • Толстых Владислав Самуилович
  • Калиновский Сергей Константинович
  • Куксенко Иван Васильевич
  • Ильюшонок Валерий Васильевич
  • Рязанцев Юрий Михайлович
  • Власов Леонид Алексеевич
SU1576578A1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБЧАТЫХ ИЗДЕЛИЙ 2004
  • Недоспасов Лев Александрович
  • Помазан Александр Александрович
  • Лежнин Константин Витальевич
  • Пуйко Алексей Васильевич
  • Немцев Сергей Александрович
  • Рязанцев Юрий Михайлович
  • Щавлева Любовь Александровна
  • Мокшин Сергей Константинович
  • Бухарин Олег Георгиевич
  • Дейнеко Леонид Николаевич
  • Величко Александр Григорьевич
  • Кимстач Татьяна Владимировна
  • Большаков Владимир Иванович
RU2279487C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КОНСТРУКЦИОННЫХ СТАЛЕЙ 2007
  • Свищенко Владимир Владимирович
  • Чепрасов Дмитрий Петрович
  • Радченко Михаил Васильевич
  • Филатов Юрий Александрович
  • Сейдуров Михаил Николаевич
RU2348701C2
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ 2004
  • Недоспасов Л.А.
  • Помазан А.А.
  • Лежнин К.В.
  • Пуйко А.В.
  • Немцев С.А.
  • Рязанцев Ю.М.
  • Щавлева Л.А.
  • Дейнеко Леонид Николаевич
  • Величко Александр Григорьевич
  • Большаков Владимир Иванович
RU2256705C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ 2003
  • Брижан А.И.
  • Бодров Ю.В.
  • Грехов А.И.
  • Горожанин П.Ю.
  • Жукова С.Ю.
  • Мурзин В.Н.
  • Рыбинский Н.Ф.
  • Лефлер М.Н.
  • Пышминцев И.Ю.
  • Кривошеева Антонина Андреевна
  • Крылатков С.И.
RU2230802C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ШТАМПОВ И ПРЕСС-ФОРМ 2013
  • Афонин Борис Владимирович
  • Великолуг Александр Михайлович
  • Воронин Павел Вячеславович
  • Воронин Роман Павлович
  • Макаров Сергей Стефанович
  • Салов Александр Иванович
  • Ярмолович Галина Михайловна
RU2527575C1
СПОСОБ ОТПУСКА ЗАКАЛЕННЫХ ИЗДЕЛИЙ ИЗ КОНСТРУКЦИОННЫХ И ИНСТРУМЕНТАЛЬНЫХ СТАЛЕЙ 2004
  • Недоспасов Л.А.
  • Помазан А.А.
  • Лежнин К.В.
  • Пуйко А.В.
  • Немцев С.А.
  • Рязанцев Ю.М.
  • Щавлева Л.А.
  • Дейнеко Леонид Николаевич
  • Величко Александр Григорьевич
  • Большаков Владимир Иванович
  • Волкова Алла Сергеевна
RU2255984C1
СПОСОБ ЗАКАЛКИ ИЗДЕЛИЙ ИЗ СТАЛЕЙ И СПЛАВОВ 2000
  • Муравьев В.И.
  • Чернобай С.П.
  • Лончаков С.З.
  • Марьин Б.Н.
  • Кобалдин Ю.Г.
RU2186859C2
Способ изготовления изделий преимущественно из сталей мартенситного класса 1983
  • Гайко Виктор Андреевич
  • Давидович Александр Николаевич
  • Клушин Валерий Александрович
  • Андреев Георгий Васильевич
  • Горбунов Эдуард Матвеевич
  • Дайлиде Кястутис Пранович
  • Микешка Юргис Брониславович
SU1135781A1

Иллюстрации к изобретению RU 2 277 593 C1

Реферат патента 2006 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КРУПНОГАБАРИТНЫХ ИЗДЕЛИЙ

Изобретение относится к области термической обработки крупногабаритных изделий типа соединительных деталей трубопроводов или толстостенных труб большого диаметра из малоуглеродистой и низколегированной сталей. Техническим результатом является оптимизация параметров обработки. Способ термической обработки крупногабаритных изделий включает нагрев, выдержку, охлаждение в несколько стадий и отпуск. Охлаждение на первой стадии ведут погружением в циркулирующую закалочную среду до температуры поверхности металла не ниже 180°С, после чего осуществляют отогрев изделий. После отогрева изделий проводят их изотермическую выдержку и/или замедленное охлаждение при температуре металла, обеспечивающей пересечение кривой охлаждения области структурного превращения аустенита в бейнит, по крайней мере, на 2/3 протяженности этой области, после чего охлаждение ведут до температуры металла не ниже 200°С со скоростью, предотвращающей для данной марки стали выделение атомов внедрения из пересыщенного твердого раствора, причем отогрев изделий ведут до температуры не выше температуры, при которой проводят изотермическую выдержку и/или замедленное охлаждение. Охлаждение на последней стадии ведут на воздухе. Отогрев изделий, изотермическую выдержку и/или замедленное охлаждение и охлаждение после изотермической выдержки и/или замедленного охлаждения могут быть проведены путем купания в спокойной или циркулирующей закалочной среде, причем скорость циркуляции среды в течение купания может быть сохранена постоянной или ее замедляют к концу купания. Скорость циркуляции закалочной среды может быть изменена посредством регулирования мощности двигателя, создающего направленный поток среды, причем охлаждение на первой стадии может быть проведено при максимальной мощности двигателя, отогрев - при мощности двигателя 0,1÷0,7 от максимальной мощности, изотермическая выдержка и/или замедленное охлаждение - при мощности двигателя 0,1÷0,9 от максимальной мощности, а охлаждение после изотермической выдержки и/или замедленного охлаждения - при мощности двигателя 0,1÷0,7 от максимальной мощности. 2 з.п. ф-лы, 2 ил., 2 табл.

Формула изобретения RU 2 277 593 C1

1. Способ термической обработки крупногабаритных изделий, включающий нагрев, выдержку, охлаждение в несколько стадий и отпуск, причем охлаждение на первой стадии ведут погружением в закалочную среду, после чего осуществляют отогрев изделий, а охлаждение на последней стадии ведут на воздухе, отличающийся тем, что охлаждение на первой стадии ведут до температуры поверхности металла не ниже 180°С в циркулирующей закалочной среде, после отогрева изделий проводят их изотермическую выдержку и/или замедленное охлаждение при температуре металла, обеспечивающей пересечение кривой охлаждения области структурного превращения аустенита в бейнит, по крайней мере, на 2/3 протяженности этой области, после чего охлаждение ведут до температуры металла не ниже 200°С со скоростью, предотвращающей для данной марки стали выделение атомов внедрения из пересыщенного твердого раствора, причем отогрев изделий ведут до температуры не выше температуры, при которой проводят изотермическую выдержку и/или замедленное охлаждение.2. Способ по п.1, отличающийся тем, что отогрев изделий, изотермическую выдержку и/или замедленное охлаждение и охлаждение после изотермической выдержки и/или замедленного охлаждения ведут путем купания в спокойной или циркулирующей закалочной среде, причем скорость циркуляции среды в течение купания сохраняют постоянной или замедляют к концу купания.3. Способ по п.1 или 2, отличающийся тем, что скорость циркуляции закалочной среды регулируют посредством изменения мощности двигателя, создающего направленный поток среды, причем охлаждение на первой стадии ведут при максимальной мощности двигателя, отогрев - при мощности двигателя 0,1÷0,7 от максимальной мощности, изотермическую выдержку и/или замедленное охлаждение - при мощности двигателя 0,1÷0,9 от максимальной мощности, а охлаждение после изотермической выдержки и/или замедленного охлаждения - при мощности двигателя 0,1÷0,7 от максимальной мощности.

Документы, цитированные в отчете о поиске Патент 2006 года RU2277593C1

Способ термической обработки крупногабаритных изделий 1988
  • Большаков Владимир Иванович
  • Дейнеко Леонид Николаевич
  • Дробязко Владимир Алексеевич
  • Толстых Владислав Самуилович
  • Калиновский Сергей Константинович
  • Куксенко Иван Васильевич
  • Ильюшонок Валерий Васильевич
  • Рязанцев Юрий Михайлович
  • Власов Леонид Алексеевич
SU1576578A1
Способ изотермической закалки стали 1979
  • Петер Листеманн
  • Вальтер Ритт
  • Райнхольд Жалац
  • Ханс-Дитер Сегецци
SU1232147A3
СПОСОБ ТЕРМОЦИКЛИЧЕСКОЙ ОБРАБОТКИ НИЗКОЛЕГИРОВАННЫХ И УГЛЕРОДИСТЫХ СТАЛЕЙ 1996
  • Лебедев В.В.
  • Ривкин С.И.
  • Животовская Т.В.
  • Щагина Н.Е.
  • Сафронова А.А.
  • Ефимова В.И.
RU2135605C1
СПОСОБ МИКРОЛЕГИРОВАНИЯ УГЛЕРОДИСТОЙ СТАЛИ 1997
  • Дерябин А.А.
  • Рыскина С.Г.
  • Лебедев В.И.
  • Обшаров М.В.
  • Могильный В.В.
  • Пятайкин Е.М.
  • Катунин А.И.
  • Анашкин Н.С.
  • Спирин С.А.
RU2131931C1
СПОСОБ ЗАКАЛКИ МАССИВНЫХ ИЗДЕЛИЙ СЛОЖНОЙ КОНФИГУРАЦИИ 1996
  • Борисов И.А.
  • Левитан Л.М.
  • Борисов А.И.
RU2105823C1
СПОСОБ КОМПЛЕКСНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КРУПНОГАБАРИТНЫХ ПОКОВОК 2003
  • Грекова И.И.
  • Теплухина И.В.
  • Титова Т.И.
  • Филимонов Г.Н.
  • Цуканов В.В.
  • Шульган Н.А.
RU2235791C1

RU 2 277 593 C1

Авторы

Недоспасов Лев Александрович

Помазан Александр Александрович

Лежнин Константин Витальевич

Пуйко Алексей Васильевич

Немцев Сергей Александрович

Рязанцев Юрий Михайлович

Щавлева Любовь Александровна

Мокшин Сергей Константинович

Бухарин Олег Георгиевич

Дейнеко Леонид Николаевич

Величко Александр Григорьевич

Кимстач Татьяна Владимировна

Москаленко Анатолий Андреевич

Зотов Евгений Николаевич

Большаков Владимир Иванович

Даты

2006-06-10Публикация

2004-11-30Подача