МАГНИТНЫЙ ДЕФЕКТОСКОП Российский патент 2007 года по МПК G01N27/83 

Описание патента на изобретение RU2295721C2

Устройство относится к области неразрушающего контроля ферромагнитных объектов и может быть использован при наружной дефектоскопии газо- и нефтепроводов.

Известен немецкий патент (DE 10253123, IPC F 16 L 55/16, Bezechnung Vorrichtung und Verfahren zur Jnspektion order Reparatur von erdveriegten Rohr-feltungen). Введение шнекового конвейера с элементами, охватывающими трубу, позволяет очищать ее от земли и определять дефекты с помощью инспектирующего прибора 5. В этом устройстве не описан способ и конструкция дефектоскопа. В МНПО «Спектр» выпускается магнитный сканер дефектоскоп СКН-1 с шириной зоны контроля 150 мм. Этот сканер и способ в основе его не позволяют выявлять дефекты на больших участках трубопроводов а автоматизированном режиме. Известен сканер EPS фирмы Розен (Бакаев В.В. Совершенствование технологий и диагностического оборудования компании Розен. Сб XI межд. деловая встреча «Диагностика-2001». Т.2,1. М 2001, с.52), который, перемещаясь по наружной поверхности трубы, выявляет дефекты на внутренней поверхности и в теле трубы. Оборудование фирмы состоит из трех основных компонентов: беспроводной самоходный сканер, устанавливаемый на трубопровод, контрольная панель для ручного или дистанционного управления и компьютер для обработки и визуализации данных. Обследование выполняется по окружности 360° наземных открытых трубопроводов из углеродистой стали. Он может быть использован для инспектирования многочисленных открытых участков трубопровода. Более подробные сведения об этом оборудовании представлены в статье Ronold Tuls "External Jnspesotion": Higt Resolution MFL Robotic Pipe Scanner (RPS) (Not nec. June 2004, vul N006). Однако представленная конструкция изложена без подробного описания и не может достоверно определять дефекты по всей окружности из-за одностороннего вертикального расположения сканера.

Известен магнитный дефектоскоп для контроля цилиндрических объектов (а.с. SU 1161859, МПК G 01 N 27/82), содержащий намагничивающую систему, измерительные преобразователи, блок регистрации и тележку, выполненную в виде самоходного шасси. В данном устройстве устанавливают дефектоскоп на контролируемую поверхность; ориентируют его вдоль заданного направления, например по винтовой линии; устанавливают заданное значение зазора между полюсом намагничивающей системы и контролируемой поверхностью, перемещают дефектоскоп по контролируемой поверхности объекта с некоторой скоростью и регистрируют магнитные потоки рассеяния от дефектов в стенках объекта с помощью измерительного преобразователя.

Этот дефектоскоп повышает производительность контроля цилиндрических объектов, но имеет неустойчивое положение опор, обеспечение превышения больших сил притяжения над весом дефектоскопа и отсутствие позиционирования дефектов.

Известен магнитный интроскоп - прототип устройства (пат. RU 2185616, МПК G 01 N 27/83) для контроля газопроводов без снятия защитной изоляции, содержащий передвижное намагничивающее устройство на колесах, сканирующий преобразователь магнитного поля, контроллер преобразователь, видеоконтрольный терминал, масштабно-временной преобразователь и сканирующий преобразователь, размещенные непосредственно на передвижном намагничивающем устройстве на колесах, таким образом, что между полюсами намагничивающего устройства и объектом контроля выполнен зазор, сканирующий преобразователь магнитного поля расположен между полюсами намагничивающего устройства и введен каркас, выполненный из направляющих, связанных с торцом стяжками, размещенный на поверхности за счет сил притяжения намагничивающего устройства. Этот интроскоп имеет ограниченную размерами каркаса зону контроля и не позволяет выявлять дефекты по всей поверхности трубопровода в автоматизированном режиме.

Задачей изобретения является повышение производительности магнитного дефектоскопа для контроля трубопровода снаружи продольных и поперечных дефектов.

Новым в предлагаемом техническом решении является установка двух преобразователей магнитного поля на съемном каркасе и перемещение их в осевом и тангенциальном направлении от двигателей через редуктор, позиционирование дефектов с помощью двух одометров.

Решение поставленной задачи обеспечивается тем, что магнитный дефектоскоп, содержащий передвижные модули с блоками датчиков магнитного поля, установленные на колесных опорах, содержит разъемную раму, состоящую из несущего основания и двух полурам, соединенных шарнирами, и контактирующих с поверхностью трубопровода приводными колесами, связанными с мотор-редуктором продольного движения, опорными и прижимными колесами и роликовыми опорами, два магнитных модуля с блоками датчиков магнитного поля, один из которых намагничивает стенку трубопровода в продольном направлении, а другой - в поперечном, закреплены через подвесы на зубчатом кольце, состоящем из двух полуколец, соединенных петлевым узлом, установленном на роликовых опорах рамы и соединенном с мотор-редуктором привода окружного движения, причем на раме установлены одометр продольного движения, энергетическая установка, электрически соединенные с блоком управления приводами продольного и окружного движения, на зубчатом кольце - одометр окружного движения, блок накопления информации, соединенный с датчиками магнитного поля и одометрами, и блок питания.

Изобретение поясняется чертежами магнитной системы для реализации предложенного способа в виде схемы устройства на фиг.1 и в виде магнитного узла и блока датчиков на фиг.2.

Магнитный дефектоскоп для инспектируемой трубы 1 состоит из двух передвижных магнитных модулей с блоками датчиков магнитного поля 2, установленных на колесных опорах 3 и закрепленных через подвесы 4 на зубчатом кольце 5, состоящем из двух полуколец, соединенных петлевым узлом 6. Кольцо зубчатое 5 установлено на роликовых опорах 7 рамы 8, состоящей из несущего основания и двух полурам, соединенных шарнирами 9. Разъемная рама имеет приводные 10, опорные 11 и прижимные колеса 12, с помощью которых перемещается вдоль обследуемой трубы 1. Приводные колеса 10 связаны цепной передачей 13 между собой и с мотор-редуктором продельного движения 14. Кольцо зубчатое 5 через ведущую шестерню 15 и цепную передачу 16 соединено с мотор-редуктором привода окружного движения 17. На раме 8 закреплен одометр продольного движения 18, а на зубчатом кольце 5 - одометр окружного движения 19. На раме 8 также размещена энергетическая установка в виде дизель-генератора 20, который электрически соединен с блоком управления приводами 21, соединенным с мотор-редукторами 14 и 17, одометром продольного движения 18 и выносным проводным пультом управления 22. На зубчатом кольце 5 также установлены электронный блок обработки хранения и передачи данных 23 и блок питания 24. Магнитный модуль с блоком датчиков (фиг.2) состоит из ярма 25, магнитов 26, накладок 27, полюсных наконечников 28, датчиков Холла 29 и блока АЦП 30. Один модуль намагничивает стенку трубопровода в продольном направлении, а другой в поперечном.

Магнитный дефектоскоп работает следующим образом. На обследуемом трубопроводе 1, закрепляя шарнирами 9, собирают разъемную раму 8, которая контактирует с поверхностью трубопровода приводными 10, опорными 11 и прижимными колесами 12. На роликовые опоры 7 устанавливают зубчатое кольцо 5, с петлевым узлом 6, на которое навешивают через подвесы 4 магнитные модули с блоками датчиков 2. При нажатии соответствующих кнопок на пульте управления 22 напряжение питания от энергетической установки 20, через блок управления 21 подается на привод окружного движения (из мотор-редуктора 17, связанного цепной передачей 16 с ведущей шестерней 15) и привод продольного движения (состоящего из мотор-редуктора 14, связанного цепной передачей 13 с приводными колесами 10), магнитные модули с блоками датчиков 2 начинают катиться на колесах 3 по винтовой траектории (складываются поступательное и вращательное движения). Шаг винтовой линии выбирается из условия сканирования всей поверхности трубы каждым магнитным модулем и определяется по формуле , где l - ширина зоны, контролируемой датчиками одного магнитного модуля; kn,=1,1...1,2 - коэффициент перекрытия.

Одометры 18 и 19 позволяют определить координаты дефектов по длине трубопровода и их ориентацию относительно «верха трубы», причем сигнал с одометра 18 передается в электронный блок накопления информации 23 бесконтактным способом.

В процессе перемещения снаряда вдоль трубопровода магнитные модули 2 производят последовательное намагничивание (от магнитов 26, через ярмо 25, накладки 27 и полюсные наконечники 28) участков стенок трубопровода до состояния насыщения. При наличии в намагничиваемом участке стенки трубопровода дефекта, в виде трещины, образуется магнитный поток рассеяния, интенсивность которого зависит от конфигурации и размеров дефекта, регистрируемый датчиком Холла 29, сигнал преобразуется блоком АЦП 30 и передается в электронный блок обработки хранения и передачи данных 23 запитываемый от блока питания 24. Для достижения максимальной чувствительности обнаружения как продольных, так и поперечных трещин первый магнитный модуль намагничивает стенку трубопровода в продольном направлении, а второй - в поперечном. Конструкция магнитных модулей обеспечивает постоянный воздушный зазор между полюсными наконечниками и стенкой контролируемой трубы и равномерное магнитное поле в межполюсном зазоре. В качестве магниточувствительных преобразователей применены термостабилизированные датчики Холла с активными элементами SS495A, имеющие пределы регистрации поля в пределах ±65 мТл и крутизну преобразования .

Таким образом, удается добиться максимальной производительности при контроле дефектов снаружи трубы, не нарушая тонкого тефлонового покрытия внутри современных магистральных газопроводов.

Похожие патенты RU2295721C2

название год авторы номер документа
Устройство для магнитометрической диагностики наземных трубопроводов и емкостей без удаления изоляционного покрытия 2020
  • Будневский Вадим Викторович
  • Жданов Игорь Анатольевич
  • Сергеев Андрей Борисович
  • Проказин Александр Борисович
  • Васильев Александр Николаевич
  • Курашвили Андрей Евгеньевич
RU2736143C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ СТЕНОК ТРУБОПРОВОДОВ 2011
  • Филатов Александр Анатольевич
  • Бакурский Николай Николаевич
  • Соловых Игорь Анатольевич
  • Братков Илья Степанович
  • Бакурский Александр Николаевич
  • Петров Валерий Викторович
RU2453835C1
УСТАНОВКА НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТРУБ 2015
  • Цыпуштанов Александр Григорьевич
  • Слаутин Леонид Викторович
RU2605391C1
НАРУЖНЫЙ СКАНИРУЮЩИЙ ДЕФЕКТОСКОП 2013
  • Топилин Алексей Владимирович
  • Калинин Николай Александрович
  • Бакурский Николай Николаевич
  • Соловых Игорь Анатольевич
  • Бакурский Александр Николаевич
  • Петров Валерий Викторович
  • Цаплин Александр Викторович
  • Карякин Вячеслав Александрович
  • Гаранин Андрей Константинович
RU2539777C1
СКАНИРУЮЩИЙ ДЕФЕКТОСКОП 2009
  • Бакурский Николай Николаевич
  • Антипов Борис Николаевич
  • Егоров Иван Фёдорович
  • Бакурский Александр Николаевич
  • Братков Илья Степанович
  • Петров Валерий Викторович
RU2402760C1
КОМПЛЕКС ВНУТРИТРУБНОЙ ДЕФЕКТОСКОПИИ С ТРОСОВОЙ ПРОТЯЖКОЙ 2015
  • Топилин Алексей Владимирович
  • Житомирский Борис Леонидович
  • Ангалев Александр Михайлович
  • Бакурский Николай Николаевич
  • Соловых Игорь Анатольевич
  • Петров Валерий Викторович
  • Цаплин Александр Викторович
RU2586258C1
СПОСОБ ВНУТРИТРУБНОЙ ДЕФЕКТОСКОПИИ И ДЕФЕКТОСКОП-СНАРЯД ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Ефремов Г.А.
  • Усошин В.А.
  • Трофимов П.П.
  • Муханов Н.А.
  • Степанов Ю.А.
  • Эндель И.А.
  • Голочанов В.А.
  • Горбунова С.В.
  • Горячев В.Г.
  • Грушко Е.С.
  • Дубов А.А.
  • Куликов В.А.
  • Ландарь А.Д.
  • Леонтьев Г.А.
  • Михайлов В.А.
  • Резников Г.С.
  • Сабиров Ю.Р.
  • Солонович А.А.
  • Бутусов И.И.
RU2109206C1
Магнитная система сканера-дефектоскопа 2016
  • Марков Анатолий Аркадиевич
RU2680103C2
Магистральный проходной магнитный дефектоскоп 2023
  • Коваленко Александр Николаевич
  • Шестаков Роман Алексеевич
RU2820508C1
ВНУТРИТРУБНЫЙ СНАРЯД-ДЕФЕКТОСКОП С КОЛЕСНЫМИ ОДОМЕТРАМИ 2007
  • Синев Андрей Иванович
  • Никишин Владимир Борисович
  • Чигирев Петр Григорьевич
  • Плотников Петр Колестратович
RU2334980C1

Иллюстрации к изобретению RU 2 295 721 C2

Реферат патента 2007 года МАГНИТНЫЙ ДЕФЕКТОСКОП

Изобретение относится к области магнитного контроля ферромагнитных трубопроводов. Технический результат: повышение производительности контроля продольных и поперечных дефектов снаружи трубопровода. Сущность: дефектоскоп содержит разъемную раму, состоящую из несущего основания и двух полурам, соединенных шарнирами. Рама контактирует с поверхностью трубопровода приводными колесами, связанными с мотор-редуктором продольного движения, опорными и прижимными колесами и роликовыми опорами. Два магнитных модуля с блоками датчиков магнитного поля, один из которых намагничивает стенку трубопровода в продольном направлении, а другой - в поперечном, закреплены через подвесы на зубчатом кольце, состоящем из двух полуколец, соединенных петлевым узлом. Кольцо установлено на роликовых опорах рамы и соединено с мотор-редуктором привода окружного движения. На раме установлены одометр продольного движения, энергетическая установка, электрически соединенные с блоком управления приводами продольного и окружного движения. На зубчатом кольце установлены одометр окружного движения, блок накопления информации, соединенный с датчиками магнитного поля и одометрами, и блок питания. 2 ил.

Формула изобретения RU 2 295 721 C2

Магнитный дефектоскоп, содержащий передвижные модули с блоками датчиков магнитного поля, установленные на колесных опорах, отличающийся тем, что он содержит разъемную раму, состоящую из несущего основания и двух полурам, соединенных шарнирами, и контактирующую с поверхностью трубопровода приводными колесами, связанными с мотор-редуктором продольного движения, опорными и прижимными колесами и роликовыми опорами, два магнитных модуля с блоками датчиков магнитного поля, один из которых намагничивает стенку трубопровода в продольном направлении, а другой - в поперечном, закреплены через подвесы на зубчатом кольце, состоящем из двух полуколец, соединенных петлевым узлом, установленном на роликовых опорах рамы и соединенным с мотор-редуктором привода окружного движения, причем на раме установлены одометр продольного движения, энергетическая установка, электрически соединенные с блоком управления приводами продольного и окружного движения, на зубчатом кольце - одометр окружного движения, блок накопления информации, соединенный с датчиками магнитного поля и одометрами, и блок питания.

Документы, цитированные в отчете о поиске Патент 2007 года RU2295721C2

МАГНИТНЫЙ ИНТРОСКОП ДЛЯ КОНТРОЛЯ ГАЗОПРОВОДОВ БЕЗ СНЯТИЯ ЗАЩИТНОЙ ИЗОЛЯЦИИ 1998
  • Мурин В.И.
  • Харионовский В.В.
  • Сулимин В.Д.
  • Городниченко В.И.
  • Абакумов А.А.
  • Абакумов Алексей Алексеевич
RU2185616C2
Магнитный дефектоскоп 1983
  • Зацепин Николай Николаевич
  • Гусев Александр Петрович
  • Михальцевич Георгий Александрович
  • Поярков Павел Николаевич
SU1161859A1
US 3967194 A, 29.09.1976
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором 1915
  • Круповес М.О.
SU59A1

RU 2 295 721 C2

Авторы

Морозов Алексей Константинович

Синев Андрей Иванович

Кузьмин Валерий Павлович

Кузьмин Дмитрий Владимирович

Даты

2007-03-20Публикация

2005-03-09Подача