СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЛИННОМЕРНЫХ ИЗДЕЛИЙ Российский патент 2011 года по МПК C21D1/42 C21D9/08 

Описание патента на изобретение RU2421527C1

Изобретение относится к технологиям термообработки изделий из стали, преимущественно из высоколегированной стали, и может быть использовано при термообработке труб, в частности гофрированных труб, и других цилиндрических изделий различного сечения, в том числе сварных.

Известен способ термической обработки длинномерных изделий, включающий индукционный нагрев и последующее охлаждение, при этом нагрев изделия осуществляют до температуры в интервале от (Ac1+25)°C до (Ас3-25)°С со скоростями от 500 до 1000°С/с, а охлаждение производят с интенсивностью теплоотвода (20-40)·103 Вт/м2·°С (RU, 2231563 С1, МПК7 С21D 1/42, 27.06.2004).

Данный способ обеспечивает получение определенной структуры материала, которая обладает повышенной прочностью и упругостью, по крайней мере, не ниже исходной. Однако недостатком известного способа является отсутствие улучшения коррозионной стойкости изделия к растрескиванию путем устранения остаточных напряжений.

Известен также способ термической обработки трубы, в котором индукционный нагрев осуществляют в несколько стадий с использованием нескольких последовательно соосно расположенных индукторов (JP, 54110113 А, МПК C21D 1/18, 29.08.1979). Данный способ закалки заключается в последовательной многостадийной термической обработке стали, на первой стадии которой материал нагревается до определенной температуры, а затем на 2-ой и последующих стадиях выдерживается при более высокой температуре. Способ применяется для получения материала определенной структуры.

Недостатком данного способа является также отсутствие улучшения коррозионной стойкости изделия к растрескиванию путем устранения остаточных напряжений сложность процесса и оборудования, большой расход электроэнергии.

Технической задачей предлагаемого изобретения является улучшение с помощью минимального количества технологических операций и при минимальном расходе электроэнергии коррозионной стойкости стальных длинномерных изделий и предотвращение коррозионного растрескивания изделий под влиянием остаточных механических напряжений при сохранении неизменной питтингостойкости изделия и предупреждении появления окалины.

Способ термической обработки длинномерных изделий согласно изобретению заключается в том, что осуществляют индукционный нагрев и последующее принудительное охлаждение, причем нагрев осуществляют в среде инертного газа в две стадии, при этом на первой стадии осуществляют нагрев до температуры в интервале 750-800°С при скорости нагрева 12-33°C/сек, а на второй стадии - до температуры в интервале 850-900°С при скорости нагрева 0,8-6,2°C/сек, причем скорость движения изделия составляет 1-2,5 м/мин, время нагрева на каждой стадии - 24-60 сек, а охлаждение производят со скоростью 13-35°C/сек.

В способе термической обработки согласно изобретению среду инертного газа создают путем подачи инертного газа во внутренний объем изделия.

Отличие предлагаемого способа от известных из уровня техники заключается в режимах проведения операций нагрева и охлаждения: скорости нагрева, температуры нагрева, среды, в которой производят нагрев, интенсивности охлаждения.

Технический эффект достигается новой, не известной из уровня техники совокупностью режимов термообработки, учитывающих скорость движения и геометрию изделия.

Предлагаемый способ осуществляют следующим образом. Изделие, подлежащее термической обработке, подают в два последовательно расположенных проходных индуктора непрерывного действия. При прохождении изделия через индукторы осуществляют двухстадийный индукционный нагрев изделия токами высокой частоты. При прохождении сквозь первый индуктор (первая стадия) изделие нагревают до температуры в интервале 750-800°С со скоростью нагрева 12-33°C/сек, при этом происходит резкое снижение уровня остаточных напряжений. При прохождении сквозь второй индуктор (вторая стадия) изделие нагревают до температуры в интервале 850-900°С при скорости нагрева 0,8-6,2°C/сек. Скорость движения изделия сквозь индукторы равна 1-2,5 м/мин, время нагрева на каждой стадии 24-60 сек. При нагреве изделия во время прохождения сквозь индукторы внутрь цилиндрического изделия подают инертный газ. На выходе из второго индуктора изделие подают в охлаждающее устройство, где осуществляют его принудительное воздушное охлаждение со скоростью 13-35°C/сек.

Пример 1.

Производят термическую обработку гофрированной трубы из нержавеющей высоколегированной стали типа 1,4301 с внутренним диаметром 127 мм и толщиной стенки 0,9 мм. Трубу подают в два последовательно расположенных проходных индуктора непрерывного действия. Скорость движения трубы составляет 1,33±0,15 м/мин. В первом индукторе трубу нагревают до температуры 770°С при скорости нагрева 16,5°C/сек. Затем во втором индукторе осуществляют нагрев трубы до температуры 900°С при скорости нагрева 2,9°C/сек. Время нагрева на каждой стадии равно 45 сек. При этом нагрев в обоих индукторах осуществляют в среде инертного газа (аргон Аr), который подают во внутренний объем трубы. Далее трубу перемещают в охлаждающее устройство, где ее охлаждают воздухом до температуры 70°С при скорости охлаждения 18,4°C/сек. Затем трубу передают на дальнейшие технологические операции. В таблице 1 представлены данные по примеру 1.

Таблица 1 Внутренний диаметр трубы, мм Толщина стенки трубы, мм Скорость движения трубы, м/мин Температура нагрева 1 индуктора Т1, °С Скорость нагрева на первом индук., °С/сек Температура нагрева 2 индуктора Т2, °С Скорость нагрева на втором индук., °С/сек Время нагрева на каждой ступени, сек 127 0,9 1,33±0,15 770 16,5 900 2,9 45

Пример 2.

Производят термическую обработку гофрированной трубы из нержавеющей высоколегированной стали типа 1,4301 с внутренним диаметром 48 мм и толщиной стенки 0,5 мм. Трубу подают в два последовательно расположенных проходных индуктора непрерывного действия. Скорость движения трубы составляет 2,0±0,2 м/мин. В первом индукторе трубу нагревают до температуры 800°С при скорости нагрева 25,8°C/сек. Затем во втором индукторе осуществляют нагрев трубы до температуры 850°С при скорости нагрева 1,7°C/сек. Время нагрева на каждой стадии равно 30 сек. При этом нагрев в обоих индукторах осуществляют в среде инертного газа (аргон Аr), который подают во внутренний объем трубы. Далее трубу перемещают в охлаждающее устройство, где ее охлаждают воздухом до температуры 70°С при скорости охлаждения 23,3°C/сек. Затем трубу передают на дальнейшие технологические операции. В таблице 2 представлены данные по примеру 2.

Таблица 2 Внутренний диаметр трубы, мм Толщина стенки трубы, мм Скорость движения трубы, м/мин Температура нагрева 1 индуктора Т1, °С Скорость нагрева на первом индук., °C/сек Температура нагрева 2 индуктора Т2, °С Скорость нагрева на втором индук., °C/сек Время нагрева на каждой ступени, сек 48 0,5 2,0±0,2 800 25,8 850 1,7 30

В таблице 3 представлены сравнительные данные испытаний на коррозионное растрескивание под напряжением согласно ГОСТ 26294-84 «Соединения сварные. Методы испытаний на коррозионное растрескивание» образцов высоколегированных нержавеющих сталей марок 1,4301 и 1,4404, подвергнутых термообработке по предлагаемому способу и не подвергнутых таковой.

Таблица 3. Марка стали Характеристика образца Время до появления первой трещины, час 1,4301 без термообработки 4 "-" с термообработкой >1000 1,4404 без термообработки 20 "-" с термообработкой >1000

Представленные в таблице 3 данные показывают, что совокупное влияние скорости и температуры нагрева, а также интенсивности охлаждения при заданных скоростях движения изделия, позволяет эффективно перераспределять и снимать напряжения I и II рода в объеме изделия и по границам зерен, устраняя, тем самым, склонность данных марок стали к растрескиванию под напряжением. Термообработанные в данном режиме стали демонстрируют увеличение времени до появления первой трещины в 50-250 раз в зависимости от марки стали и могут быть признаны несклонными к коррозионному растрескиванию под напряжением согласно ГОСТ 26294-84 «Соединения сварные. Методы испытаний на коррозионное растрескивание». В то же время, за счет нагрева стали в среде инертного газа, питтингостойкость стали остается практически неизменной, т.к. за счет кратковременности нагрева структура стали не претерпевает изменений и остается аустенитной. Вместе с тем способ реализуют небольшим количеством оборудования, а двухстадийность процесса, малое время нагрева и предлагаемое сочетание температур по стадиям обеспечивает эффективное использование электроэнергии и возможность гибко регулировать процесс в зависимости от диаметра и толщины стенки трубы.

При термообработке гофрированных стальных труб разработанные режимы термической обработки позволяют также достичь минимального температурного перепада между вершиной и впадиной гофры, что обеспечивает необходимую равномерность обработки и стабильность коррозионной стойкости по всему сечению труб.

Способ термической обработки длинномерных изделий согласно изобретению обеспечивает увеличение стойкости высоколегированной стали к коррозионному растрескиванию под напряжением в 50-250 раз. Способ обеспечивает сохранение аустенитной структуры стали, механическую прочность, пластичность и твердость стали на исходном уровне. Способ показывает эффективное энергопотребление, реализуется небольшим количеством оборудования, легко переналаживается в зависимости от скорости подачи изделия и его характеристик (толщина стенки, марка стали, поперечный профиль).

Похожие патенты RU2421527C1

название год авторы номер документа
УСТРОЙСТВО И СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЛИННОМЕРНОГО ИЗДЕЛИЯ Г-ОБРАЗНОГО ПРОФИЛЯ, ИМЕЮЩЕГО ПОДОШВУ, ШЕЙКУ, ГОЛОВКУ 2020
  • Фадеев Валерий Сергеевич
  • Павлушко Григорий Дмитриевич
  • Штанов Олег Викторович
  • Паладин Николай Михайлович
  • Чигрин Юрий Леонидович
  • Довгаль Олег Викторович
RU2755713C1
Способ безокислительной термической обработки изделий из аустенитной коррозионно-стойкой стали 2019
  • Наговицын Павел Геннадьевич
  • Мильчаков Илья Владимирович
  • Вдовенко Ирина Николаевна
RU2723871C1
Способ производства бесшовных труб из нержавеющей стали мартенситного класса типа 13Cr 2020
  • Пумпянский Дмитрий Александрович
  • Чикалов Сергей Геннадьевич
  • Пышминцев Игорь Юрьевич
  • Четвериков Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Красиков Андрей Владимирович
  • Буняшин Михаил Васильевич
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Ульянов Андрей Георгиевич
  • Лоханов Дмитрий Валериевич
  • Выдрин Александр Владимирович
RU2751069C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ КОМПЛЕКСНО-ЛЕГИРОВАННОЙ СТАЛИ 2013
  • Пономарев Николай Георгиевич
  • Грехов Александр Игоревич
  • Овчинников Дмитрий Владимирович
  • Тихонцева Надежда Тахировна
  • Жукова Светлана Юльевна
  • Суворов Александр Вадимович
  • Софрыгина Ольга Андреевна
  • Мануйлова Ирина Ивановна
RU2564196C2
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА ИЗДЕЛИЯХ ИЗ НИЗКО- И ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ, ЦВЕТНЫХ МЕТАЛЛОВ ИЛИ ИХ СПЛАВОВ МЕТОДОМ ТЕРМОДИФФУЗИОННОГО ЦИНКОВАНИЯ 2014
  • Левинский Леонид
RU2570856C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ ТРУБ 2011
  • Белов Евгений Викторович
  • Ефимов Иван Васильевич
  • Пейганович Надежда Валерьевна
  • Силин Денис Анатольевич
RU2484149C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЗУБЬЕВ ДИСКОВ ПИЛ 2004
  • Павлов В.В.
  • Теплоухов Г.М.
  • Пятайкин Е.М.
  • Тырышкин Ю.П.
  • Тарасова Г.Н.
  • Моренко А.В.
  • Чичков Ю.А.
  • Козырев Н.А.
  • Шуклин А.В.
RU2259408C1
ДВУХФАЗНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ И СПОСОБ ЕЁ ИЗГОТОВЛЕНИЯ 2017
  • Иосимура Юсукэ
  • Ота Хироки
  • Юга Масао
  • Камо Юйти
  • Эгути Кэнитиро
RU2698235C1
СВАРИВАЕМАЯ ВЫСОКОПРОЧНАЯ КОНСТРУКЦИОННАЯ СТАЛЬ ДЛЯ ИЗГОТОВЛЕНИЯ БЕСШОВНЫХ КОРРОЗИОННО-СТОЙКИХ ТРУБ И ЕМКОСТЕЙ И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ 1992
  • Инго Фон Хаген[De]
  • Рольф Пепперлинг[De]
  • Хубертус Шлеркманн[De]
  • Ульрике Цайслмаир[De]
RU2102521C1
Состав коррозионно-стойкого покрытия для защиты технологического нефтехимического оборудования 2016
  • Балдаев Лев Христофорович
  • Бакаева Раиса Дмитриевна
  • Ишмухаметов Динар Зуфарович
  • Ершов Максим Викторович
  • Шарыгин Вадим Сергеевич
  • Ригин Александр Николаевич
  • Александров Александр Геннадиевич
  • Каминский Владимир Вячеславович
  • Старшов Игнат Михайлович
RU2636210C2

Реферат патента 2011 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЛИННОМЕРНЫХ ИЗДЕЛИЙ

Изобретение относится к технологии термообработки изделий из стали, преимущественно из высоколегированной стали. Изобретение может быть использовано при термообработке труб, в частности гофрированных труб, и других цилиндрических изделий различного сечения, в том числе сварных. Для улучшения коррозионной стойкости изделий и предотвращения коррозионного растрескивания изделий под влиянием остаточных механических напряжений при сохранении неизменной питтингостойкости изделия и предупреждении появления окалины осуществляют термическую обработку длинномерных изделий, которая включает индукционный нагрев при прохождении изделий через индукторы и последующее принудительное охлаждение. Нагрев ведут в среде инертного газа в две стадии. На первой стадии проводят нагрев до температуры в интервале 750-800°С при скорости нагрева 12-33°С/сек, а на второй стадии - до температуры в интервале 850-900°С при скорости нагрева 0,8-6,2°С/сек. Скорость движения изделия составляет 1-2,5 м/мин, а время нагрева на каждой стадии 24-60 сек. Охлаждение производят со скоростью 13-35°С/сек. 2 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 421 527 C1

1. Способ термической обработки длинномерных изделий, включающий индукционный нагрев при прохождении изделия через индукторы и последующее принудительное охлаждение, отличающийся тем, что нагрев осуществляют в среде инертного газа в две стадии, при этом на первой стадии осуществляют нагрев до температуры в интервале 750-800°С при скорости нагрева 12-33°С/с, а на второй стадии - до температуры в интервале 850-900°С при скорости нагрева 0,8-6,2°С/с, причем скорость движения изделия составляет 1-2,5 м/мин, а время нагрева на каждой стадии 24-60 с, при этом охлаждение производят со скоростью 13-35°С/с.

2. Способ по п.1, отличающийся тем, что инертный газ подают во внутренний объем изделия.

3. Способ по п.1 или 2, отличающийся тем, что осуществляют термообработку гофрированной трубы из нержавеющей высоколегированной стали.

Документы, цитированные в отчете о поиске Патент 2011 года RU2421527C1

Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба 1919
  • Кауфман А.К.
SU54A1
Устройство для индукционного нагрева ферромагнитных изделий 1943
  • Александров В.В.
SU64162A1
Установка для нагрева изделий 1984
  • Херсонский Анатолий Кельманович
  • Любашевский Михаил Семенович
  • Мавлюдов Равиль Фатхуллаевич
SU1216221A1
СПОСОБ НЕПРЕРЫВНОЙ БЕЗОКИСЛИТЕЛЬНОЙ ТЕРМООБРАБОТКИ ДЛИННОМЕРНЫХ ОСОБОТОНКОСТЕННЫХ ТРУБ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Потоскаев Г.Г.
  • Иванов А.В.
  • Фролов Е.В.
  • Чиченков А.А.
  • Корюк В.Ф.
  • Галков Г.А.
  • Сухов А.Ф.
RU2126844C1
СПОСОБ БЕЗОКИСЛИТЕЛЬНОЙ ТЕРМООБРАБОТКИ ДЛИННОМЕРНЫХ ТРУБ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Потоскаев Г.Г.
  • Виноградов А.Ф.
  • Сухов А.Ф.
  • Фролов Е.В.
  • Иванов А.В.
  • Корюк В.Ф.
  • Галков Г.А.
  • Чиченков А.А.
  • Чубукин В.В.
  • Авраменко А.В.
RU2187562C2
US 4142923 A, 06.03.1979
US 5487795 A, 30.01.1996.

RU 2 421 527 C1

Авторы

Кроткова Ольга Всеволодовна

Самойлов Сергей Васильевич

Червинский Владимир Исаакович

Горячун Вера Николаевна

Даты

2011-06-20Публикация

2010-03-26Подача