БЕСПЛАТФОРМЕННАЯ СИСТЕМА ОРИЕНТАЦИИ Российский патент 2012 года по МПК G01C21/00 

Описание патента на изобретение RU2456546C1

Изобретение относится к измерительной технике и может использоваться в бесплатформенных инерциальных системах ориентации и навигации.

Известны бесплатформенные системы ориентации, имеющие в своем составе измерительный блок, состоящий из трех одноосных датчиков угловой скорости и вычислитель [Интегрированные системы ориентации и навигации для морских подвижных объектов. Анучин О.Н., Емельянцев Г.И. - С.-Петербург: ЦНИИ «Электроприбор», 1999 г.]. В таких системах для повышения точности применяется фильтрация Калмана, которая требует значительных вычислительных ресурсов и может применятся не ко всем типам подвижных объектов.

Известны бесплатформенные системы ориентации, имеющие в своем составе измерительный блок, состоящий из трех одноосных датчиков угловой скорости, и вычислитель [Гироскопические системы. Гироскопические приборы и системы: Учеб. для вузов по спец. «Гироскопические приборы и устройства» / Д.С.Пельпор, И.А.Михалев, В.А.Бауман и др.; под ред. Д.С.Пельпора. - 2-е изд., перераб. доп. - М.: Высш. шк., 1988. - С.316-336].

Такие бесплатформенные системы ориентации предназначены для определения параметров ориентации подвижного объекта. В них датчиками угловой скорости измеряется угловая скорость объекта в связанной с ним системе координат и с помощью вычислителя осуществляется аналитическое построение базовой системы координат (например, нормальной земной системы координат), по отношению к которой определяют параметры ориентации подвижного объекта.

Недостатком является недостаточная точность системы ориентации и то, что такие устройства не учитывают влияние мультипликативных погрешностей датчиков угловой скорости, что приводит к дрейфу аналитически построенной базовой системы координат, при этом скорость дрейфа зависит от частот, амплитуд и фаз колебаний подвижного объекта.

Технической задачей настоящего изобретения является повышение точности бесплатформенной системы ориентации за счет уменьшения погрешностей в определении параметров ориентации подвижного объекта, обусловленных влиянием мультипликативных погрешностей датчиков угловой скорости.

Поставленная задача достигается тем, что в бесплатформенную систему ориентации, состоящую из первого, второго и третьего одноосных датчиков угловой скорости и вычислителя, причем выход первого датчика угловой скорости соединен с первым входом вычислителя, выход второго датчика угловой скорости соединен с вторым входом вычислителя, выход третьего датчика угловой скорости соединен с третьим входом вычислителя, дополнительно введен блок вычисления компенсационных сигналов, при этом выход первого датчика угловой скорости соединен с первым входом блока вычисления компенсационных сигналов, выход второго датчика угловой скорости соединен с вторым входом блока вычисления компенсационных сигналов, выход третьего датчика угловой скорости соединен с третьим входом блока вычисления компенсационных сигналов, первый выход блока вычисления компенсационных сигналов соединен с четвертым входом вычислителя, второй выход блока вычисления компенсационных сигналов соединен с пятым входом вычислителя, третий выход блока компенсационных сигналов соединен с четвертым входом вычислителя.

На фигуре приведена конструктивная схема бесплатформенной системы ориентации.

Бесплатформенная система ориентации состоит из первого - 1, второго - 2 и третьего - 3 одноосных датчиков угловой скорости, блока вычисления компенсационных сигналов - 4 и вычислителя - 5. Выход первого датчика угловой скорости соединен с первым входом 9 вычислителя и с первым входом 6 блока вычисления компенсационных сигналов. Выход второго датчика угловой скорости соединен с вторым входом 10 вычислителя и с вторым входом 7 блока вычисления компенсационных сигналов. Выход третьего датчика угловой скорости соединен с третьим входом 11 вычислителя и с третьим входом 8 блока вычисления компенсационных сигналов. Первый выход блока вычисления компенсационных сигналов соединен с четвертым входом 12 вычислителя, второй выход блока вычисления компенсационных сигналов соединен с пятым входом 13 вычислителя, третий выход блока вычисления компенсационных сигналов соединен с четвертым входом 14 вычислителя.

Бесплатформенная система ориентации работает следующим образом.

Сигналы с датчиков абсолютной угловой скорости поступают в вычислитель, а также в дополнительно введенный блок вычисления компенсационных сигналов.

В дополнительно введенном блоке вычисления компенсационных сигналов на основании сигналов, поступающих с датчиков абсолютной угловой скорости, вычисляются скорости нарастания погрешностей в определении параметров ориентации подвижного объекта, обусловленных влиянием мультипликативных погрешностей датчиков угловой скорости по следующим формулам:

где

- скорость нарастания погрешности в определении угла курса, обусловленная влиянием мультипликативных погрешностей датчиков угловой скорости;

- скорость нарастания погрешности в определении угла тангажа, обусловленная влиянием мультипликативных погрешностей датчиков угловой скорости;

- скорость нарастания погрешности в определении угла курса, обусловленная влиянием, мультипликативных погрешностей датчиков угловой скорости;

, , ; K1, K2, K3 - номинальные значения коэффициентов передачи датчиков угловых скоростей, первого, второго и третьего соответственно; ΔK1, ΔK2, ΔK3 - изменения коэффициентов передачи датчиков угловых скоростей первого, второго и третьего соответственно, определяющие мультипликативные погрешности датчиков угловой скорости;

ψm, υm, γm, ν, φψ, φυ, φγ - амплитуды, частота и фазы колебаний подвижного объекта по курсу, тангажу и крену.

Далее сигналы с блока вычисления компенсационных сигналов поступают в вычислитель, где учитываются при вычислении параметров ориентации.

Проведенное моделирование показало, что при построении бесплатформенной системы ориентации на указанных принципах погрешности в определении параметров ориентации, обусловленные влиянием мультипликативных погрешностей датчиков угловой скорости, значительно уменьшаются, то есть точность повышается.

Таким образом, использование изобретения позволяет определять угловые скорости в базовой системе координат и параметры ориентации объекта, не содержащие погрешностей, обусловленных влиянием мультипликативных погрешностей датчиков угловой скорости.

Похожие патенты RU2456546C1

название год авторы номер документа
БЕСПЛАТФОРМЕННАЯ СИСТЕМА ОРИЕНТАЦИИ 2005
  • Богданов Максим Борисович
  • Прохорцов Алексей Вячеславович
  • Савельев Валерий Викторович
  • Аверчева Анна Юрьевна
RU2282199C1
НАВИГАЦИОННЫЙ КОМПЛЕКС, УСТРОЙСТВО ВЫЧИСЛЕНИЯ СКОРОСТИ И КООРДИНАТ, БЕСПЛАТФОРМЕННАЯ ИНЕРЦИАЛЬНАЯ КУРСОВЕРТИКАЛЬ, СПОСОБ КОРРЕКЦИИ ИНЕРЦИАЛЬНЫХ ДАТЧИКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Кизимов Алексей Тимофеевич
  • Фролова Людмила Евгеньевна
  • Алексеев Станислав Михайлович
  • Фролов Василий Федорович
RU2373498C2
СПОСОБ КАЛИБРОВКИ ИЗМЕРИТЕЛЕЙ УГЛОВОЙ СКОРОСТИ БЕСПЛАТФОРМЕННЫХ ИНЕРЦИАЛЬНЫХ СИСТЕМ ОРИЕНТАЦИИ КОСМИЧЕСКИХ АППАРАТОВ И УСТРОЙСТВО ЕГО РЕАЛИЗУЮЩЕЕ 2011
  • Головченко Анатолий Алексеевич
  • Головченко Любовь Васильевна
RU2466068C1
СПОСОБ КАЛИБРОВКИ ГИРОИНЕРЦИАЛЬНЫХ ИЗМЕРИТЕЛЕЙ БЕСПЛАТФОРМЕННОЙ ИНЕРЦИОННОЙ НАВИГАЦИОННОЙ СИСТЕМЫ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА 1992
  • Дюмин А.Ф.
  • Егоров С.Н.
  • Корабельщиков В.В.
  • Суринский Д.М.
RU2092402C1
Способ инерциальной навигации беспилотного летательного аппарата и устройство для его осуществления 2020
  • Линец Геннадий Иванович
  • Сагдеев Константин Мингалеевич
  • Шепеть Игорь Петрович
  • Исаев Михаил Александрович
RU2744700C1
НАВИГАЦИОННЫЙ КОМПЛЕКС ЛЕТАТЕЛЬНОГО АППАРАТА 2005
  • Вавилова Нина Борисовна
  • Волков Геннадий Иванович
  • Ильин Виталий Витальевич
  • Коржуев Михаил Вадимович
  • Масленников Валерий Георгиевич
  • Староверов Алексей Червонович
RU2293950C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОЙ УГЛОВОЙ ОРИЕНТАЦИИ ПОДВИЖНОГО ОБЪЕКТА И ЛАЗЕРНЫЙ ИЗМЕРИТЕЛЬНЫЙ БЛОК 1996
  • Енин В.Н.
  • Зюзев Г.Н.
  • Кробка Н.И.
  • Мезенцев А.П.
  • Судаков В.Ф.
RU2112926C1
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ УГЛОВ НАКЛОНА БЛОКА ИНЕРЦИАЛЬНЫХ ИЗМЕРИТЕЛЕЙ КОМПЛЕКСНОЙ СИСТЕМЫ УГЛОВОЙ ОРИЕНТАЦИИ ОТНОСИТЕЛЬНО ПЛОСКОСТИ ГОРИЗОНТА 2016
  • Потапов Анатолий Андреевич
  • Купоросова Елена Серафимовна
RU2649026C1
СПОСОБ ИНЕРЦИАЛЬНОЙ НАВИГАЦИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Шепеть Игорь Петрович
RU2572403C1
Способы формирования данных об ориентации объекта и навигационный комплекс летательного аппарата для их реализации 2020
  • Артемьев Сергей Николаевич
  • Коротков Олег Валерьевич
  • Благов Сергей Геннадьевич
  • Долгов Василий Вячеславович
  • Жемеров Валерий Иванович
RU2745083C1

Реферат патента 2012 года БЕСПЛАТФОРМЕННАЯ СИСТЕМА ОРИЕНТАЦИИ

Изобретение относится к измерительной технике и может использоваться в бесплатформенных инерциальных системах ориентации и навигации. В бесплатформенную систему ориентации, состоящую из трех одноосных датчиков угловой скорости, выходы которых соединены с соответствующими входами вычислителя, введен блок вычисления компенсационных сигналов, обусловленных влиянием мультипликативных погрешностей датчиков угловой скорости, с соответствующими входами которого соединены выходы датчиков угловой скорости. Выходы блока вычисления компенсационных сигналов соединены с входами вычислителя. Использование изобретения позволяет определять угловые скорости в базовой системе координат и параметры ориентации объекта, не содержащие погрешностей, обусловленных влиянием мультипликативных погрешностей датчиков угловой скорости. 1 ил.

Формула изобретения RU 2 456 546 C1

Бесплатформенная система ориентации, состоящая из первого, второго и третьего одноосного датчика угловой скорости и вычислителя, причем выход первого датчика угловой скорости соединен с первым входом вычислителя, выход второго датчика угловой скорости соединен с вторым входом вычислителя, выход третьего датчика угловой скорости соединен с третьим входом вычислителя, отличающаяся тем, что в нее дополнительно введен блок вычисления компенсационных сигналов, обусловленных влиянием мультипликативных погрешностей датчиков угловой скорости, при этом выход первого датчика угловой скорости соединен с первым входом блока вычисления компенсационных сигналов, выход второго датчика угловой скорости соединен с вторым входом блока вычисления компенсационных сигналов, выход третьего датчика угловой скорости соединен с третьим входом блока вычисления компенсационных сигналов, первый выход блока вычисления компенсационных сигналов соединен с четвертым входом вычислителя, второй выход блока вычисления компенсационных сигналов соединен с пятым входом вычислителя, третий выход блока компенсационных сигналов соединен с четвертым входом вычислителя.

Документы, цитированные в отчете о поиске Патент 2012 года RU2456546C1

БЕСПЛАТФОРМЕННАЯ СИСТЕМА ОРИЕНТАЦИИ 1998
  • Литманович Ю.А.
RU2154810C2
БЕСПЛАТФОРМЕННАЯ ИНЕРЦИАЛЬНАЯ НАВИГАЦИОННАЯ СИСТЕМА ПОДВОДНОГО АППАРАТА 1997
  • Каралюн В.Ю.
  • Поляков В.Н.
RU2123665C1
БЕСПЛАТФОРМЕННАЯ ИНЕРЦИАЛЬНАЯ КУРСОВЕРТИКАЛЬ 2003
  • Березин Д.Р.
  • Кизимов А.Т.
  • Алексеев С.М.
  • Лебедев А.Н.
  • Фролов В.Ф.
RU2249791C2
БЕСПЛАТФОРМЕННЫЙ ИНЕРЦИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ 2007
  • Андреев Алексей Гурьевич
  • Бахонин Константин Алексеевич
  • Баженов Владимир Ильич
  • Будкин Владимир Леонидович
  • Ермаков Владимир Сергеевич
  • Краснов Владимир Викторович
RU2368871C2
Штамп для изгибания прессованных и катаных профилей 1950
  • Пытьев П.Я.
SU87518A1
US 5708438 A, 13.01.1998
БЕСПЛАТФОРМЕННАЯ СИСТЕМА ОРИЕНТАЦИИ 2005
  • Богданов Максим Борисович
  • Прохорцов Алексей Вячеславович
  • Савельев Валерий Викторович
  • Аверчева Анна Юрьевна
RU2282199C1
JP 60238713 A, 27.11.1985
US 6634207 B1, 21.10.2003.

RU 2 456 546 C1

Авторы

Богданов Максим Борисович

Прохорцов Алексей Вячеславович

Савельев Валерий Викторович

Юдакова Надежда Дмитриевна

Даты

2012-07-20Публикация

2010-12-16Подача