СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ БЕСПЛАТФОРМЕННОЙ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ Российский патент 2016 года по МПК G01C23/00 

Описание патента на изобретение RU2593432C1

Изобретение относится к области инерциальной навигации и может быть использовано в первую очередь в авиационных бесплатформенных инерциальных навигационных систем (БИНС).

Известен способ повышения точности бесплатформенной инерциальной навигационной системы (БИНС), основанный на применении математической модели погрешностей БИНС при совместной обработке информации инерциального счисления и спутниковой навигационной системы с помощью различного вида фильтров. Результаты совместной обработки используются либо в виде поправок к выходным параметрам чисто инерциальной информации, либо в виде оценок поправок к калибровочным величинам первичных погрешностей системы, которые учитываются при первичной обработке сигналов инерциальных датчиков, то есть непосредственно участвуют в формирование инерциальных параметров [1, 2].

Недостатком известного способа является то, что его реализация возможна только при наличии спутниковой информации в каждом полете, а также невысокая помехоустойчивость от сбоев спутниковой информации, так как формирование поправок производится в реальном времени.

Задачей, на достижение которой направлено заявленное изобретение, является создание БИНС, независимой от постоянного поступления спутниковой информации непосредственно во время полета, при этом достигаются такие технические результаты как повышение помехоустойчивости БИНС и исключение возможности наращивания ошибок при поступлении недостоверной информации от спутниковой навигационной системы.

Заявленные технические результаты достигаются способом повышения точности бесплатформенной инерциальной навигационной системы (БИНС), основанном на применении математической модели погрешностей БИНС при совместной обработке информации инерциального счисления и спутниковой навигационной системы, результаты которой используются в виде оценок поправок к калибровочным величинам первичных погрешностей системы. Согласно заявленному способу, независимо от доступности информации спутниковой навигационной системы в текущем полете, используются запомненные оценки поправок к калибровочным величинам первичных погрешностей системы, сформированные в предыдущем и/или предыдущих полетах.

Проверка оценок поправок к калибровочным величинам первичных погрешностей системы, путем фильтрации по критериям достоверности и наблюдаемости, проводится на протяжении всего полета, при этом окончательная оценка формируется как средневзвешенная оценка по полетам, в которых доступна информация спутниковой навигационной системы, а запомненной оценке, полученной в конкретном полете, присваивается весовой коэффициент, соответствующий номеру полета и наблюдаемости первичных погрешностей в конкретном полете.

Запомненные оценки используются в последующих полетах, путем формирования поправок к выходным параметрам инерциального канала с помощью решения уравнений погрешностей БИНС на основе этих оценок с учетом траектории полета.

Суть данного способа состоит в следующем.

В текущем полете, по данным об инерциальной скорости и координатам, получаемым от спутниковой навигационной системы, оценивается вектор состояния системы уравнений ошибок, включающий в себя набор параметров первичных погрешностей БИНС. Оценки инструментальных погрешностей, полученные на момент посадки, сохраняются, например, в бортовую память системы или отдельный блок памяти и обработки данных, и в дальнейшем используются для формирования поправок к инерциальному режиму для последующих полетов.

Такой способ формирования оценок поправок к калибровочным величинам первичных погрешностей системы обеспечивает постоянный режим функционирования БИНС, даже в случае отсутствия или искажения данных, поступающих от спутниковой навигационной системы.

Кроме того, для повышения помехозащищенности, поправки запоминаются, если информация от спутниковой навигационной системы в течение определенного времени сохраняет достоверность и выполняются условия наблюдаемости инструментальных погрешностей в данном полете, что позволяет исключить недостоверные оценки.

Осуществляют способ следующим образом.

В текущем полете не учитываются оценки поправок к калибровочным величинам первичных погрешностей системы, поступающие от совместной обработки информации инерциального счисления и спутниковой навигационной системы. Поступающие данные подвергают обработке на борту во время полета, заключающейся в фильтрации по критериям достоверности и наблюдаемости на протяжении всего полета. Затем, формируется окончательная оценка, как средневзвешенная оценка по полетам, в которых доступна информация спутниковой навигационной системы. Эту оценку запоминают и запомненной оценке, полученной в конкретном полете, присваивается весовой коэффициент, соответствующий номеру полета и наблюдаемости первичных погрешностей в конкретном полете.

Весовые коэффициенты зависят от номера предыдущего полета (убывают для «устаревающих» полетов) и свойств наблюдаемости инструментальных погрешностей в них.

Запомненные оценки используются в последующих полетах, путем формирования поправок к выходным параметрам инерциального канала с помощью решения уравнений погрешностей БИНС на основе этих оценок, с учетом траектории полета, т.е. решается система уравнений ошибок БИНС на текущей траектории, вычисляемая БИНС в автономном режиме, в которую подставляются взвешенные оценки инструментальных погрешностей, полученные в предыдущих полетах. В результате решения системы уравнений ошибок вычисляются поправки с учетом траектории текущего полета, вычитаемые из координат и скоростей инерциального режима.

Таким образом, в предлагаемом способе, обеспечивается возможность не вмешательства в автономный инерциальный режим, а проводится только коррекция выходных параметров.

Заявленный способ формирования оценок позволяет в значительной мере сократить вероятность внесения недостоверных данных в систему, вызванных погрешностями спутниковой навигационной системы, что обеспечивает помехозащищенность БИНС, а кроме того обеспечивается точность навигации при отсутствии данных от спутниковой навигационной системы в какой-либо промежуток времени конкретного полета.

БИБЛИОГРАФИЧЕСКИЕ ДАННЫЕ ИСТОЧНИКА ИНФОРМАЦИИ

1. George Т. Schmidt, Richard Е. Phillips, INS/GPS Integration Architectures, in NATO RTO Lecture Series 232 PRE-PRINTS, Advances in Navigation Sensors and Integration Technology, May 2004, pp. 5-1 - 5-18.

2. RU 2386108 C1, Волжин Анатолий Сергеевич, 10.04.2010, СПОСОБ ИНТЕГРАЦИИ НАВИГАЦИОННОЙ ИНФОРМАЦИИ И САМОИНТЕГРИРОВАННАЯ ИНЕРЦИАЛЬНАЯ НАВИГАЦИОННАЯ СИСТЕМА.

Похожие патенты RU2593432C1

название год авторы номер документа
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ НАЧАЛЬНОЙ ВЫСТАВКИ БЕСПЛАТФОРМЕННОЙ ИНЕРЦИАЛЬНОЙ СИСТЕМЫ 2015
  • Вавилова Нина Борисовна
  • Голован Андрей Андреевич
  • Измайлов Евгений Аркадьевич
  • Кухтевич Сергей Евгеньевич
  • Парусников Николай Алексеевич
  • Фомичев Александр Владимирович
RU2591738C1
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ БЕСПЛАТФОРМЕННОЙ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ 2019
  • Чернодаров Александр Владимирович
  • Патрикеев Андрей Павлович
  • Халютина Ольга Сергеевна
RU2725029C1
СПОСОБ КОМПЛЕКСИРОВАНИЯ НАВИГАЦИОННОЙ ИНФОРМАЦИИ БЕСПЛАТФОРМЕННЫХ ИНЕРЦИАЛЬНЫХ НАВИГАЦИОННЫХ СИСТЕМ С СИСТЕМОЙ ВЫБОРА ПРИОРИТЕТА 2023
  • Трефилов Петр Михайлович
  • Мещеряков Роман Валерьевич
RU2823452C1
Способ коррекции углов ориентации ЛА по сигналам от одноантенной СНС 2022
  • Качанов Борис Олегович
  • Кулабухов Владимир Сергеевич
  • Заец Виктор Федорович
  • Туктарев Николай Алексеевич
RU2790081C1
Способ комплексирования бесплатформенных инерциальных навигационных систем 2019
  • Титлянов Владимир Александрович
  • Якушев Артем Анатольевич
  • Тимонов Анатолий Сергеевич
  • Елисеев Сергей Станиславович
  • Егошин Константин Викторович
  • Мафтер Михаил Борисович
  • Косолапов Владимир Григорьевич
  • Смирнов Михаил Юрьевич
  • Чернявец Владимир Васильевич
RU2708901C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАВИГАЦИОННЫХ ПАРАМЕТРОВ ОБЪЕКТА И БЕСПЛАТФОРМЕННАЯ ИНЕРЦИАЛЬНАЯ НАВИГАЦИОННАЯ СИСТЕМА ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2017
  • Черенков Сергей Анатольевич
  • Лисин Алексей Анатольевич
  • Худяков Александр Александрович
RU2661446C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ МОДЕЛИ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ АКСЕЛЕРОМЕТРОВ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ ПО ИЗМЕРЕНИЯМ СПУТНИКОВОЙ НАВИГАЦИИ 2012
  • Дишель Виктор Давидович
  • Межирицкий Ефим Леонидович
  • Немкевич Виктор Андреевич
  • Сапожников Александр Илариевич
  • Соколова Наталья Викторовна
  • Быков Андрей Константинович
  • Сулимов Виктор Григорьевич
RU2504734C1
СПОСОБ ОЦЕНИВАНИЯ ОШИБОК ИНЕРЦИАЛЬНОЙ ИНФОРМАЦИИ И ЕЁ КОРРЕКЦИИ ПО ИЗМЕРЕНИЯМ СПУТНИКОВОЙ НАВИГАЦИОННОЙ СИСТЕМЫ 2015
  • Джанджгава Гиви Ивлианович
  • Базлев Дмитрий Анатольевич
  • Герасимов Геннадий Иванович
  • Лобко Сергей Валентинович
  • Бражник Валерий Михайлович
  • Кавинский Владимир Валентинович
  • Курдин Василий Викторович
  • Прядильщиков Александр Петрович
  • Негриков Виктор Васильевич
  • Орехов Михаил Ильич
  • Линник Максим Юрьевич
  • Манохин Вячеслав Иванович
  • Требухов Артем Викторович
  • Габбасов Сает Минсабирович
  • Коркишко Юрий Юрьевич
  • Кузнецов Алексей Михайлович
RU2617565C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОРРЕКТИРУЮЩИХ ПОПРАВОК В БЕСПЛАТФОРМЕННОЙ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЕ 2017
  • Бабурин Сергей Михайлович
  • Силина Валентина Вилениновна
  • Сивохина Татьяна Евгеньевна
  • Черенков Сергей Анатольевич
  • Николаева Елена Владимировна
RU2654964C1
Способ коррекции углов ориентации БИНС на скользящем интервале 2022
  • Качанов Борис Олегович
  • Кулабухов Владимир Сергеевич
  • Туктарев Николай Алексеевич
  • Цацин Александр Алексеевич
RU2790076C1

Реферат патента 2016 года СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ БЕСПЛАТФОРМЕННОЙ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ

Изобретение относится к области инерциальной навигации и может быть использовано в авиационных бесплатформенных инерциальных навигационных системах (БИНС). Технический результат - расширение функциональных возможностей. Для этого работоспособность БИНС обеспечивается при отсутствии данных от спутниковой навигационной системы на основе использования данных, полученных в предыдущих полетах. При этом оценка поправок к калибровочным величинам первичных погрешностей системы по критериям достоверности и наблюдаемости проводится на протяжении всего полета. Окончательная оценка формируется как средневзвешенная оценка по полетам, в которых доступна информация спутниковой навигационной системы, а запомненной оценке, полученной в конкретном полете, присваивается весовой коэффициент, соответствующий номеру полета и наблюдаемости первичных погрешностей в конкретном полете. 2 з.п. ф-лы.

Формула изобретения RU 2 593 432 C1

1. Способ повышения точности бесплатформенной инерциальной навигационной системы (БИНС), основанный на применении математической модели погрешностей БИНС при совместной обработке информации инерциального счисления и спутниковой навигационной системы, результаты которой используются в виде оценок поправок к калибровочным величинам первичных погрешностей системы, отличающийся тем, что независимо от доступности информации спутниковой навигационной системы в текущем полете используются запомненные оценки поправок к калибровочным величинам первичных погрешностей системы, сформированные в предыдущем и/или предыдущих полетах.

2. Способ по п. 1, отличающийся тем, что проверка оценок поправок к калибровочным величинам первичных погрешностей системы, путем фильтрации по критериям достоверности и наблюдаемости, проводится на протяжении всего полета, при этом окончательная оценка формируется как средневзвешенная оценка по полетам, в которых доступна информация спутниковой навигационной системы, а запомненной оценке, полученной в конкретном полете, присваивается весовой коэффициент, соответствующий номеру полета и наблюдаемости первичных погрешностей в конкретном полете.

3. Способ по п. 1, отличающийся тем, что запомненные оценки используются в последующих полетах, путем формирования поправок к выходным параметрам инерциального канала с помощью решения уравнений погрешностей БИНС на основе этих оценок с учетом траектории полета.

Документы, цитированные в отчете о поиске Патент 2016 года RU2593432C1

СПОСОБ ИНТЕГРАЦИИ НАВИГАЦИОННОЙ ИНФОРМАЦИИ И САМОИНТЕГРИРОВАННАЯ ИНЕРЦИАЛЬНАЯ НАВИГАЦИОННАЯ СИСТЕМА 2009
  • Волжин Анатолий Сергеевич
RU2386108C1
СПОСОБ КОРРЕКЦИИ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ КОСМИЧЕСКОГО АППАРАТА ПРИ ДВИЖЕНИИ ВНЕ АТМОСФЕРЫ 1993
  • Альдяков Анатолий Анатольевич
  • Волошин Евгений Антонович
  • Сметский Игорь Николаевич
RU2062989C1
ИНЕРЦИАЛЬНО-СПУТНИКОВЫЙ МОДУЛЬ И КОМПЛЕКСНАЯ ИНЕРЦИАЛЬНО-СПУТНИКОВАЯ СИСТЕМА НАВИГАЦИИ, СВЯЗИ, ОСВЕЩЕНИЯ ОБСТАНОВКИ, УПРАВЛЕНИЯ И КОНТРОЛЯ 1992
  • Бабушкин С.А.
  • Вихнович Г.И.
  • Цвинтарный В.Я.
RU2036432C1
АВТОНОМНАЯ БОРТОВАЯ СИСТЕМА УПРАВЛЕНИЯ КОСМИЧЕСКОГО АППАРАТА ГАСАД-2А 2005
  • Гнатюк Севастиян Дмитриевич
RU2304549C2
Системы адаптивного управления летательными аппаратами/ А.С.Новоселов и др
-М.: Машиностроение, 1987, с.252-253.

RU 2 593 432 C1

Авторы

Вавилова Нина Борисовна

Голован Андрей Андреевич

Измайлов Евгений Аркадьевич

Кухтевич Сергей Евгеньевич

Парусников Николай Алексеевич

Фомичев Александр Владимирович

Даты

2016-08-10Публикация

2015-05-19Подача