СПОСОБ БОНДАРЕНКО А.В. ПОЛУЧЕНИЯ РАДИОТЕХНИЧЕСКОЙ ИНФОРМАЦИИ И РАДИОТЕХНИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2016 года по МПК G01S5/04 

Описание патента на изобретение RU2599259C1

Изобретение относится к области радиотехнической разведки и может быть использовано для определения местоположения источника рассеянного радиоизлучения радиолокационными станциями воздушных объектов с помощью приемных постов с последовательным сканированием радиоизлучений по частоте.

Известен способ получения радиотехнической информации станциями радиотехнической разведки, входящими в состав многопозиционного комплекса пассивной локации, заключающийся в том, что разнесенными на местности приемными постами последовательно сканируют радиоизлучения от воздушных объектов и данные сканирования направляют на центральный приемный пост, где их преобразуют в единую центральную декартову систему координат с началом в центральном приемном посту, все вновь полученные пеленги и разности времен излучения сигналов от воздушных объектов группируют по радиотехническим признакам, после чего решают задачу отождествления частных трасс полета воздушных объектов и радиотехнических отметок, полученных в результате решения задачи определения местоположения воздушных объектов решением разностно-дальномерной задачи

для приемных постов с последовательным сканированием радиоволн по частоте; где Rn={R1,2, R1,3, R1,4} - разность дальностей прихода сигналов; τn - разности времени прихода сигналов; порядковый номер групп пары i-ых приемных постов от источника радиолокационной информации в эти приемные посты; xi, yi, zi - координаты приемных постов, x, y, z - координаты воздушного объекта, при этом отождествление трасс и радиотехнических отметок производят расчетом попадания отметки воздушного объекта в строб автозахвата при выполнении условия , где d - строб автозахвата, определяемый максимальной скоростью воздушного объекта и ошибками определения его координат, хЭ, yЭ, zЭ - экстраполированные координаты воздушного объекта, причем в процессе трассового сопровождения для снижения воздействия шума и для измерения положения объекта по каждой координате применяют α, β - фильтры, которые обеспечивают оценку положения и скорости при его равномерном прямолинейном движении, далее результаты измерений отождествляют между собой и с построенными ранее траекториями и определяют принадлежность поступивших данных или уже имеющимся траекториям их полета [1].

Однако α, β - фильтры в блоке трассового сопровождения не позволяют получать четкие траектории движения и их координаты в заданный момент времени. В многопозиционных комплексах пассивной локации, где единичные замеры от одного и того же воздушного объекта могут поступать на вторичную обработку от разных позиций, причем нерегулярно во времени и с различной точностью, α, β - фильтры не эффективны.

Известно устройство многопозиционного комплекса пассивной локации, состоящее из четырех информационных датчиков приемных постов станции радиотехнической разведки с последовательным сканированием радиоизлучений, способных измерять в азимутальной плоскости направления движения с излучающими радиоэлектронными средствами и фиксировать момент перехода импульсов от излучающих средств при смене направления движения, приемных постов, способных сканировать по частоте и определять местоположение путем решения разностно-дальномерной задачи на приемных постах с последовательным сканированием радиоволн по частоте, электронного блока автосопровождения в стробе размером , а также из α, β - фильтров в блоке трассового сопровождения [1].

В однопозиционных обзорных радиолокационных станциях, в которых единичные замеры поступают на вторичную обработку регулярно с периодом обзора, а их точность для каждого воздушного объекта неизменна в нескольких соседних периодах обзора, широко используют простейшие фильтры первого порядка (по каждой координате) с постоянными коэффициентами сглаживания α, β (так называемые «α, β-фильтры»). Эти фильтры при соответствующем выборе α, β обеспечивают оценку положения и скорости воздушного объекта при его равномерном прямолинейном движении с минимальной среднеквадратической ошибкой.

Известен способ получения радиотехнической информации станциями радиотехнической разведки, входящими в состав многопозиционного комплекса пассивной локации с последовательным сканированием радиоизлучений, заключающийся в том, что синхронизированные между собой по времени и разнесенными на местности четырьмя приемными постами радиоизлучения направляют на центральный приемный пост, где их преобразуют в центральную декартову систему координат с началом в центральном приемном посту, все полученные первичные радиотехнические измерения привязывают к сопровождаемым радиотехническим траекториям на множестве изолированных радиотехнических отметок, сформированным в течении нескольких циклов сканирования, выполняют процедуру обнаружения радиотехнических траекторий, которая состоит из следующих действий: вычисляют координаты x, y, z; определяют размеры стробов d привязки, исходя из максимальной скорости и ошибок определения координат в стробе автозахвата , где x, y, z - координаты воздушного объекта, хЭ, yЭ, zЭ - экстраполированные координаты; производят завязку траекторий путем вычисления начальных параметров возможной траектории нового воздушного объекта - координат, скорости, направления движения, ковариационной матрицы ошибок оценки этих параметров по отметкам, полученным в различных циклах сканирования и содержащихся в стробах привязки; проверяют истинность завязываемых траекторий и производят подтверждение их траекторий; принимают решение об обнаружении в виде (v/m-l) при появлении v отметок в m смежных обзорах, при этом траекторию считают ложной при отсутствии отметок в n смежных обзорах и при отсутствии отметок в l смежных обзорах, а по измерениям, полученным многопозиционным комплексом пассивной локации, производят сопровождение, причем в процессе трассового сопровождения применяют фильтр Калмана, использующий вероятностную модель динамики воздушного объекта [2].

Известно устройство многопозиционного комплекса пассивной локации, состоящее из четырех информационных датчиков приемных постов станции радиотехнической разведки, способных измерить в азимутальной плоскости направление движения воздушных объектов с излучающими радиотехническими средствами, фиксировать момент перехода импульсов от излучающих средств при смене направления движения, сканировать по частоте и определять местоположение путем решения разностно-дальномерной задачи, центрального поста управления электронного блока автосопровождения в стробе , где x, y, z - координаты воздушного объекта, хЭ, уЭ, zЭ - экстраполированные координаты, а также блока трассового сопровождения с фильтром Калмана вероятностного моделирования динамики воздушного объекта [2].

В многопозиционных комплексах пассивной локации, где единичные замеры по одному и тому же воздушному объекту могут поступать на вторичную обработку от разных позиций нерегулярно во времени и с различной точностью, простейшие «α, β-фильтры» неэффективны, поэтому применяют более сложные фильтры Калмана в различных модификациях, хотя их реализация требует более высокой производительности вычислительных средств.

Для каждого момента времени tk+1 фильтр Калмана формирует сглаженную оценку вектора состояния на основе оценки X (полученной по предыдущим k наблюдениям воздушного объекта в моменты tk) и вновь поступившего замера , а именно Ризм(k+1) - корреляционная матрица замера Xизм(k+1); Pk+1 - корреляционная матрица оценки , определяемая рекуррентным соотношением .

Выражения , Pk+1 с учетом модели движения полностью определяют алгоритм калмановской фильтрации при заданных начальных условиях. Результатами фильтрации на каждом шаге являются оптимальная сглаженная оценка вектора состояния и ее корреляционная матрица Pk+1.

Недостатком известного способа получения радиотехнической информации на радиотехническом комплексе является: неполнота полученной приемными постами и обрабатываемой центральным приемным постом информации о движущихся воздушных объектах; неполный состав координатной информации не отождествляется и не объединяется с векторами наблюдения; избыточная информация нерационально используется в алгоритмах траекторного сопровождения.

Происходит задержка в обнаружении трассы, срыв их трассы сопровождения. Снижается показатель непрерывного сопровождения цели. Увеличивается среднеквадратичное отношение ошибок определения координат и параметров движения траекторий сопровождаемых воздушных объектов, что значительно снижает качество сопровождения в существующих многопозиционных комплексах пассивной локации. На этапе сопровождения воздушного объекта по радиотехнической информации не целесообразно производить пересчет наблюдаемых параметров в радиотехнические отметки с последующей фильтрацией результатов решения разностно-дальномерной задачи.

Существующие алгоритмы обработки радиотехнической информации выполняются в два этапа с последующим этапом ее объединения. На первичном этапе ведут обнаружение сигналов, измерение параметров сигналов и наблюдаемых координат. На вторичном этапе обработки ведут привязку отметок, поступивших от одной цели по времени, и вычисление параметров траектории цели. В процессе вторичной обработки решается задача обнаружения и сопровождения трасс целей. Такое деление не учитывает особенности построения многопозиционного комплекса пассивной локации. Излучение радиоэлектронных станций обнаруживается не всеми приемными постами, в этом случае наблюдается неполный вектор наблюдаемой информации, в отсутствии чего невозможно определение всех пространственных координат цели. Неполнота обрабатываемой информации приводит к задержке в обнаружении трассы, срыву трассы с сопровождения, что приводит к снижению показателя непрерывного сопровождения, а также к увеличению среднеквадратического отклонения ошибок определения координат и параметров движения траектории сопровождаемой цели.

Координаты определяются только по минимально необходимому количеству первичных радиотехнических измерений, остальные измерения не учитываются при формировании отметки и в алгоритмах фильтрации.

Для существующих алгоритмов фильтрации необходимо определить момент времени излучения воздушного объекта минимум 4-мя приемными постами за один обзор, чтобы определить координату воздушного объекта и только потом его оценивать.

Отсутствуют методы использования в алгоритмах траекторного сопровождения избыточности первичных радиотехнических измерений от приемного поста. Из-за отсутствия определения приоритетности радиотехнической информации при определении координат (расчета центра тяжести фигуры), а также при последующей фильтрации учета всего вектора наблюдаемой информации происходит ухудшение параметров движения траектории сопровождаемой цели.

Перечисленные факторы приводят к необходимости создания фильтра пеленговой информации в многопозиционных комплексах пассивной локации, который учитывает разновременность и неполноту наблюдаемых параметров.

Технический результат по предлагаемому способу получения радиотехнической информации станциями радиотехнической разведки в составе многопозиционного комплекса пассивной локации с последовательным сканированием радиоизлучений от воздушных объектов заключающемуся в том, что синхронизированные между собой по времени и разнесенными на местности каждой парой приемных постов станций радиотехнической разведки через датчики с последовательным сканированием по частоте получают данные пассивного радиоизлучения - разность времени приема радиоизлучения, несущую частоту бортового радиоэлектронного средства и момент времени получения измерения пеленга, данные направляют на центральный приемный пост, преобразуют в единую центральную декартову систему координат с началом в центральном приемном посту и привязывают к имеющимся на сопровождении радиотехническим траекториям, на множестве изолированных радиотехнических отметок, сформированном при сканировании, производят операцию фильтрации результатов решения разностно-дальномерной задачи обнаружения радиотехнической траектории в следующей последовательности: определяют размеры стробов автозахвата , где x, y, z - координаты воздушного объекта, хЭ, уЭ, zЭ - экстраполированные координаты, вычисляют начальные параметры траектории и их подтверждение по решению (v/m-l) об обнаружении при появлении v отметок в m смежных обзорах при отсутствии отметок в l смежных обзорах, устанавливают вектора S(t) состояния траектории, составляют модель движения как S(t+Δt)=FΔt·S(t), где Δt=tk+l-tk - период обзора, FΔt - матрица перехода траектории воздушного объекта при маневрировании, получают матрицу Hn(S) производной функции наблюдения , для каждой пары информационный датчиков вычисляют экстраполированные значения вектора состояния Sk+l=FΔt·S(t) и алгоритмической ковариационной матрицы - вектор экстраполяции разностей дальности, а также матрицу производной функции наблюдения в виде , рассчитывают дисперсионную ошибку экстраполяции в пространстве наблюдаемых параметров , вычисляют отклонение ΔRi, на tk+1 шаге наблюдения, от ожидаемого наблюдения при произведенной экстраполяции , определяют коэффициент усиления , где σ0 - среднеквадратическая ошибка измерения времени прихода сигнала, уточняют значение вектора состояния и алгоритмическую ковариационную матрицу , где Е - диагональная единичная матрица, и производят оценку работы фильтра при сглаживании разности времен прихода сигнала на станции радиотехнической разведки по частному показателю среднеквадратического отклонения ошибки измерения плоскостных координат , где - расстояние от цели до оценки координат в момент времени t, Nреал - количество реализаций (Nреал≥1000), достигается тем, что при сопровождении воздушного объекта по первичной радиотехнической информации на приемных постах производят одновременную первичную фильтрацию отдельных разностей времени прихода сигналов по времени их поступления, при этом движение принимают прямолинейным и равномерным, а в противном случае - принимают за маневр, а формирование начальной оценки приближенного вектора параметров траектории и ковариационной матрицы ошибок на приемных постах производят по первой фиксации разности времен прихода сигнала от цели, поступившей от одной пары информационных датчиков по новому воздушному объекту, далее производят окончательную фильтрацию информации с получением уточненного вектора параметров траектории и алгоритмической ковариационной матрицы ошибок параметров наблюдения приемных постов, выдают точную оценку параметров траектории для четкого отслеживания характера и параметров его полета, при этом на приемных постах фильтрацию разностно-дальномерной информации по воздушному объекту по времени ее поступления производят следующим образом: задают вектор состояния траектории в виде S(t)=(x, y, z, Vx, Vy, Vz), где Vx, Vy, Vz - проекции вектора скорости координат x, y, z, фильтрацию координатной информации производят по зависимости

где Rn={R1,2, R1,3, R1,4} - разность дальностей прихода сигналов; τn - разности времени прихода сигналов; порядковый номер групп пары i-ых приемных постов от источника радиолокационной информации в эти приемные посты Rn=(с·τ1; с·τ2; с·τ3)Т, с* - скорость света (с*≈3·108 м/с); далее с учетом влияния ошибок экстраполяции производят сглаживание ошибок разности времен прихода сигнала, при этом матрицу производной функции наблюдения выражают в виде

где

Операция по предлагаемой фильтрации данных на приемных постах станции радиотехнической разведки позволяет оперативно оценить наличие и характер траектории полета воздушного объекта, четко следить за траекторией его полета, корректировать траекторию полета воздушного объекта до полного ее уточнения по координатам.

Технический результат по предлагаемому радиотехническому комплексу пассивной локации с последовательным сканированием радиоизлучений от воздушных объектов, состоящему из приемных постов с информационными датчиками станции радиотехнической разведки, способных измерять в азимутальной плоскости направление движения воздушных объектов с излучающими радиотехническими средствами и фиксировать момент прихода импульсов от излучающих средств при смене направления движения воздушного объекта, сканировать по частоте и определять местоположение воздушного объекта путем решения разностно-дальномерной задачи, и оснащенных электронным блоком автозахвата воздушных объектов в стробе размером , где x,y,z - координаты воздушного объекта, - экстраполированные координаты воздушного объекта, а также блоком трассового сопровождения воздушных объектов с фильтром Калмана динамики воздушных объектов, достигается тем, что фильтр динамики воздушных объектов на каждом из приемных постов составлен из электронного блока установки вектора состояния траектории воздушного объекта S(t)=(х, у, z, Vx, Vy, Vz), где Vx, Vy, Vz - проекции вектора скорости координат x, y, z производящего фильтрацию координатной информации по зависимости

где Rn={R1,2, R1,3, R1,4} - разность дальностей прихода сигналов; τn - разности времени прихода сигналов; порядковый номер групп пары i-ых приемных постов от источника радиолокационной информации в эти приемные посты Rn=(с·τ1; с·τ2; с·τ3)Т, с* - скорость света (с≈3·108 м/с); далее с учетом влияния ошибок экстраполяции производят сглаживание ошибок разности времен прихода сигнала, при этом матрицу производной функции наблюдения выражают в виде , где,

блока вычисления экстраполированного значения вектора состояния Sk+1=FΔt·S(t), блока определения коэффициента усиления k, блока уточнения вектора состояния S(t) и алгоритмической ковариационной матрицы, а также блока оценки работы фильтра при сглаживании разности времен прихода сигнала на станции радиотехнической разведки.

Предлагаемая конструкция фильтра динамики воздушного объекта впервые позволяет оценивать координаты сопровождения его трассы по информации от одной пары приемных постов. Приемные посты станций радиотехнической разведки позволяют оперативно оценивать наличие и характер траектории полета воздушного объекта, четко следить за траекторией его полета. Фильтрация данных на первичных постах позволяет корректировать траекторию полета воздушного объекта до полного ее уточнения.

Представленное изобретение поясняется графическими материалами, где на фиг. 1 представлена блок-схема работы фильтра предлагаемой станции радиотехнической разведки с последовательным сканированием радиоизлучений по частоте, на фиг. 2 - оценка траектории прямолинейного, равномерного движения воздушного объекта и маневрирующего воздушного объекта; на фиг. 3 и на фиг. 4 представлены результаты способов получения радиотехнической информации - пунктирной линией показаны ошибки измерения, сплошной линией - значения оцениваемого показателя предлагаемого способа, пунктирной линией с точкой - способа представленного в прототипе, на фиг. 3 приведены результаты измерения среднеквадратического отклонения ошибки измерения плоскостных координат от времени наблюдения прямолинейного и равномерного движения воздушного объекта, на фиг. 4 - результаты измерения среднеквадратического отклонения ошибки измерения плоскостных координат от времени для маневрирующего объекта, на фиг. 5 - блок-схема устройства многопозиционного комплекса пассивной локации.

Устройство многопозиционного комплекса пассивной локации (фиг. 5) состоит из четырех приемных постов с информационными датчиками 1 станции радиотехнической разведки, способных измерять в азимутальное направление движения воздушного объекта с излучающими радиотехническими средствами и фиксировать момент прихода импульсов от излучающих средств при смене направления движения, сканировать по частоте и определять местоположение путем решения разностно-дальномерной задачи, и оснащенных антеннами 2 с устройством 3 их управления, с приемниками 4 радиотехнических сигналов излучаемых радиоэлектронными средствами, связанными с устройством 5 измерения сдвига принимаемых сигналов по времени и с фильтрами 6 динамики движения, состоящими из связанных: электронного блока 7 измерения вектора наблюдаемых ΔRk+1 параметров на момент времени (t+1) и блока измерения разности времен прихода сигнала в начальный момент времени (t0); блока 8 установки начального вектора состояния траектории воздушного объекта и ковариационной матрицы ошибок , подключенного к блоку 7 измерения разности времен прихода сигнала от воздушного объекта и связанного через блок 7 измерения вектора наблюдаемых ΔRk+1 параметров с отделом блока 8 установки экстраполированного вектора состояния траектории воздушного объекта Sk+1=FΔt·S(t); блока 9 расчета начальной алгоритмической ковариационной матрицы ошибок ; блока 10 моделирования движения воздушного объекта S(t+Δt)=FΔt·S(t), где Δt=tk+l-tk - период обзора, и расчета матрицы перехода FΔt; блока 11 формирования результирующей матрицы производной функции наблюдения в зависимости от количества наблюдаемых параметров , где

блока 12 вычисления отклонения, полученного на шаге tk+1 наблюдения, от наблюдения, ожидаемого при произведенной экстраполяции ; блока 13 определения коэффициента усиления ; блока 14 уточнения оценок параметров траектории воздушного объекта и , последовательно связанных между собой и с устройством 15 вычисления координат (х, у, z) воздушного объекта.

Сущность представленного способа получения радиотехнической информации информационными датчиками с последовательным сканированием по частоте состоит в следующем.

Многопозиционный комплекс пассивной локации составляют из четырех информационных датчиков 1 (фиг. 5) приемных постов 4: V={V1, V2, V3, V4} радиотехнической разведки, которые располагают в точках с координатами (xi, yi, zi)T, где . Каждой парой приемных постов 4 через устройство 5 измерения сдвига принимаемых сигналов во времени t, t+1, … и фильтры 6, в блоке 7 измеряют разность времени прихода сигналов - τn, где порядковый номер групп пары i-ых приемных постов от источника радиолокационной информации в эти приемные посты Rn=(с·τ1; с·τ2; с·τ3)Т, с - скорость света, Т - знак транспонирования.

В разностно-дальномерном многопозиционном комплексе в блоке 7 вектор наблюдаемых параметров связан с вектором независимых измерений линейной зависимостью , где В - матрица размерностью

Координаты радиоизлучающего объекта - (x; y; z)T. Для нахождения координат радиоизлучающего объекта решают систему уравнений:

За среднеквадратическую ошибку измерения времени прихода сигнала принимают величину στ.

Информация из блока 7 поступает в блок 8 обработки данных: разности времен прихода сигнала от воздушного объекта в отделение установки начального вектора состояния траектории воздушного объекта и ковариационной матрицы ошибок и отсюда информация возвращается в блок 7 в отделение измерения вектора наблюдаемых ΔRk+1 параметров на момент времени (t+1) и снова - в блок 8 в отделение установки экстраполированного вектора состояния траектории воздушного объекта Sk+1=FΔt·S(t).

Далее данные из блока 8 после обработки поступают в блок 9 расчета начальной алгоритмической ковариационной матрицы ошибок .

По структурной схеме (фиг. 1) формирования и работы фильтра 6 сигналов при формировании начальных координат траектории воздушных объектов задают движения цели в соответствии с выражением S(t+Δt)=FΔt·S(t), где Δt=tk+l-tk - период обзора в блоке 10 моделирования движения воздушного объекта и расчета матрицы перехода

В блоке 11 формируют результирующую матрицу производной функции наблюдения Hn(S) в зависимости от количества наблюдаемых параметров (Rn) в виде:

где

В блоке 12 производят вычисление отклонения, полученного на шаге tk+1 наблюдения, от наблюдения ожидаемого при произведенной экстраполяции .

Ошибку измерений характеризуют ковариационной матрицей ошибок размерностью N×N:

Ковариационную матрицу ошибок вектора Rn записывают как σ0=B·Qτ·BT с размерностью (N-1)×(N-1):

где σΔR - среднеквадратическая ошибка измерения дальности до воздушного объекта, Т - знак транспонирования.

Ковариационная матрица ошибок наблюдаемых параметров , в зависимости от их количества имеет вид:

Алгоритмическая ковариационная матрица ошибок оценки вектора состояния Sk на начальном этапе с максимально возможной дисперсией по скорости воздушного объекта в пределах априорной неопределенности имеет вид:

где , , - максимально возможная скорость изменения составляющей векторов по координатам x, y, z соответственно.

Элементы верхней части матрицы Qxyz размерностью 3×3 вычисляют по формуле:

где G - обратная матрица производных вектора наблюдаемых параметров:

В блоке 12 экстраполяции на момент времени tk+1 производят следующие вычисления:

1) Так как станции разностно-дальномерного комплекса радиотехнической разведки сканируют пространство по частоте синхронно, то по экстраполированному вектору состояния цели рассчитывают экстраполированную матрицу частных производных

2) Рассчитывают дисперсию ошибки экстраполяции в пространстве наблюдаемых параметров:

- вектор экстраполяции разностей дальности.

3) Устанавливают отклонение ΔRn на tk+1 шаге от наблюдения, ожидаемого при произведенной экстраполяции

Далее в блоке 13 определяют матрицу коэффициентов усиления и в блоке 14 уточняют значение вектора состояния траектории воздушного объекта и значение алгоритмической ковариационной матрицы на шаге k+1 обзора , задающей оценку точности полученной оценки вектора состояния и включающей в себя оценку дисперсий погрешности вычисленного состояния и ковариации

Данные из блока 14 поступают в устройство 15 вычисления координат воздушного объекта (x, y, z).

Структурная схема фильтрации разносно-дальномерной информации, полученной информационными датчиками по предлагаемому способу, имеет вид, представленный на фиг. 1

Рассмотрим два варианта движения воздушного объекта относительно многопозиционного комплекса пассивной локации.

На фиг. 2 представлены трассы воздушного объекта, движущегося прямолинейно и равномерно (вариант 1) и воздушного объекта, совершающего движение с маневром (вариант 2).

Задают следующие условия моделирования: темп обзора частотного диапазона станциями радиотехнической разведки - 5 с.; скорость движения воздушного объекта - 400 м/с, его курсовая скорость - ≤5 м/с; среднеквадратическая ошибка измерения времени прихода сигнала στ=50 нс.

В результате оценки плоскостных координат воздушных объектов при фильтрации предлагаемым способом и способом, представленным в прототипе, были получены результаты, которые представлены на фиг. 3, для прямолинейного движения воздушного объекта и на фиг. 4 - для маневрирующего воздушного объекта.

Представлены графики зависимости ошибки измерения плоскостных координат от времени наблюдения воздушного объекта на фиг. 2 - для прямолинейного движения и на фиг. 4 - для маневрирующего воздушного объекта.

По предлагаемому способу получения радиотехнической информации блок 8 комплекса пассивной локации характеризуется применением новых операций, учитывающих при формировании вектора состояния траектории воздушного объекта неполноту состава радиотехнических измерений, полученные на приемных постах

Блок 11 расчета матрицы производной функции наблюдения Hn(S) отличается тем, что функция наблюдения задается в зависимости от количества наблюдаемых параметров (Rn) без необходимости получения полного вектора наблюдаемых параметров.

Блока 12 вычисление отклонения, полученного на шаге наблюдения, от наблюдения, ожидаемого при произведенной экстраполяции, отличается тем, что ошибка вычисляется непосредственно между полученным измерением разности времени прихода сигналов и экстраполированным его значением на следующий период обзора. В существующих данная операция фильтрации выполняется для результата решения разносно-дальномерной задачи, которая вносит свою ошибку в полученное измерение.

Устройства 17 вычисления уточненных координат (x, y, z) местоположения воздушного объекта отличается применением новых операций, учитывающих особенности построения комплекса и потока измерений, поступающих от станций радиотехнической разведки с последовательным сканированием, в условиях прогнозируемой радиоэлектронной обстановки и позволяет повысить качество сопровождаемой трассы (фиг. 3 и фиг. 4). Среднеквадратическое отклонение ошибки измерения плоскостных координат в предлагаемом способе уменьшилось для прямолинейных участков движения воздушного объекта на 34%, а на участках маневрирования - на 62%.

При построении графиков σxy=ƒ(t) (рис. 3 и рис. 4) предполагается, что модели движения цели относительно многопозиционного комплекса пассивной локации заданы согласно вариантам рис. 2.

Параметры исходных данных при моделировании алгоритмов в блоках представлены в таблице.

Результаты работы предлагаемых фильтров по частному показателю σx, y представлены на рис. 3 и рис. 4, на которых пунктирной линией показаны ошибки измерения, сплошной линией - значения оцениваемого показателя предлагаемого способа.

Из полученных зависимостей установлено, что значения среднеквадратического отклонения ошибки измерений плоскостных координат предложенного способа меньше чем у представленного в прототипе: на прямолинейных участках движения цели - 20…34%, на участках маневра воздушного объекта - 52…77%.

Устойчивость фильтрации по отношению к случайным большим отклонениям измерений (выбросам) обеспечивается операцией стробирования, которая состоит в отборе значений вектора состояния измерений, удовлетворяющих условию , где Δxi - отклонение измеренного значения i-го радиотехнического параметра первичного измерения радиотехнической информации, от соответствующего значения у трассы; r - радиус многомерного шара, являющегося стробом привязки.

В разностно-дальномерном многопозиционном комплексе пассивной локации с последовательным сканированием по частоте не все приемные посты за период работы комплекса фиксируют излучаемый сигнал от воздушного объекта. В этом случае процедура вычисления координатных отметок является трудоемкой, а в большинстве случаев невозможно. Следовательно, на этапе сопровождения траектории нецелесообразно выполнять расчет координат из пространства наблюдаемых параметров путем решения разностно-дальномерной задачи. Кроме того, реализация предлагаемого способа фильтрации измерений воздушных объектов в разностно-дальномерном комплексе возможна только при одновременном синхронном приеме одних и тех же импульсов сигнала бортовой радиолокационной станции воздушного объекта не менее, чем четырьмя станциями радиотехнической разведки.

Для фильтрации измерений в разностно-дальномерном комплексе производится в известных способах по полному и в предлагаемом способе по неполному вектору наблюдаемых параметров.

Предлагаемые способ и радиотехнический комплекс получения радиотехнической информации позволяют проводить качественную фильтрацию и экстраполяцию параметров траектории излучающих воздушных объектов на многопозиционном комплексе пассивной локации уже по первичной радиотехнической информации, получаемый с применением даже одного из постов станций радиотехнической разведки.

Источники информации

1. Смирнов Ю.А. «Радиотехническая разведка» - Москва, 1997. - с. 164, 165, 190-193, 203-205, 211.

2. Черняк B.C., Заславский Л.П., Осипов Л.В. Многопозиционные радиолокационные станции и системы «Зарубежная радиоэлектроника» №1 - 1987 - с. 11, 15-17, 29-33, 42-54 (прототип).

3. Сосулин Ю.Г. Теоретические основы радиолокации и радионавигации. - М.: «Радио и связь» - 1992 - с. 122-139, 252-285.

Похожие патенты RU2599259C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ РАДИОТЕХНИЧЕСКОЙ ИНФОРМАЦИИ И РАДИОТЕХНИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Бондаренко Алексей Викторович
  • Вакуленко Александр Александрович
  • Геращенко Сергей Васильевич
  • Лобанов Александр Александрович
  • Першикова Татьяна Валерьевна
  • Смирнов Антон Анатольевич
RU2562616C1
Способ определения координат радиоизлучающего объекта в рабочей зоне многопозиционного пассивного радиотехнического комплекса и устройство для его осуществления 2020
  • Бондаренко Алексей Викторович
  • Вайпан Сергей Николаевич
  • Вакуленко Александр Александрович
  • Егоров Александр Владимирович
  • Першикова Татьяна Валерьевна
RU2757197C1
Способ определения координат источника радиоизлучения в трехмерном пространстве динамической системой радиоконтроля 2019
  • Машков Георгий Михайлович
  • Борисов Евгений Геннадьевич
  • Голод Олег Саулович
  • Егоров Станислав Геннадьевич
RU2715422C1
СПОСОБ НАВИГАЦИИ ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ РАДИОТЕХНИЧЕСКОЙ ДАЛЬНОМЕРНОЙ СИСТЕМЫ 2020
  • Шаповалов Анатолий Борисович
  • Ажгиревич Игорь Леонидович
  • Измайлов-Перкин Александр Викторович
  • Кветкин Георгий Алексеевич
  • Костюков Вадим Вячеславович
  • Свиязов Андрей Владимирович
  • Шильдкрет Александр Борисович
  • Щербинин Виктор Викторович
RU2770311C2
СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ И ПАРАМЕТРОВ ДВИЖЕНИЯ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЙ ПО ИЗМЕРЕНИЯМ ИХ НЕСУЩЕЙ ЧАСТОТЫ 2021
  • Антипов Владимир Никитович
  • Колтышев Евгений Евгеньевич
  • Испулов Аманбай Аватович
  • Трущинский Алексей Юрьевич
  • Мухин Владимир Витальевич
  • Фролов Алексей Юрьевич
  • Иванов Станислав Леонидович
  • Валов Сергей Вениаминович
  • Янковский Владимир Тадэушевич
RU2776078C1
Способ и система многоцелевого сопровождения в двухпозиционных радиолокационных системах 2018
  • Верба Владимир Степанович
  • Загребельный Илья Русланович
  • Меркулов Владимир Иванович
  • Миляков Денис Александрович
  • Садовский Петр Алексеевич
RU2716495C1
СПОСОБ ТРАССОВОГО СОПРОВОЖДЕНИЯ ВОЗДУШНЫХ МАНЕВРИРУЮЩИХ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ ПО ПЕЛЕНГОВОЙ ИНФОРМАЦИИ ОТ ОДНОПОЗИЦИОННОЙ СИСТЕМЫ РАДИОТЕХНИЧЕСКОЙ РАЗВЕДКИ ВОЗДУШНОГО БАЗИРОВАНИЯ 2017
  • Белик Борис Викторович
  • Белов Сергей Геннадьевич
  • Верба Владимир Степанович
  • Меркулов Владимир Иванович
  • Миляков Денис Александрович
RU2660498C1
ТРИАНГУЛЯЦИОННО-ГИПЕРБОЛИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ РАДИОИЗЛУЧАЮЩИХ ВОЗДУШНЫХ ОБЪЕКТОВ В ПРОСТРАНСТВЕ 2012
  • Суровцев Владимир Иванович
  • Горюнов Владимир Владимирович
  • Дормидонтов Александр Георгиевич
  • Полюхин Игорь Фёдорович
RU2503969C1
СПОСОБ АДАПТИВНОГО СОПРОВОЖДЕНИЯ РАДИОЛОКАЦИОННЫХ ЦЕЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2018
  • Маттис Алексей Валерьевич
  • Васильев Константин Константинович
  • Саверкин Олег Владимирович
  • Корсунский Андрей Сергеевич
RU2679598C1
НАЗЕМНЫЙ КОМПЛЕКС РАДИОТЕХНИЧЕСКОЙ РАЗВЕДКИ "АВТОБАЗА-М" 2015
  • Саркисьян Александр Павлович
  • Мамаев Юрий Николаевич
  • Скворцов Владимир Сергеевич
RU2615992C1

Иллюстрации к изобретению RU 2 599 259 C1

Реферат патента 2016 года СПОСОБ БОНДАРЕНКО А.В. ПОЛУЧЕНИЯ РАДИОТЕХНИЧЕСКОЙ ИНФОРМАЦИИ И РАДИОТЕХНИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к области радиотехнической разведки. Достигаемый технический результат - оперативная оценка наличия и характера траектории полета воздушного объекта. Указанный результат достигается за счет того, что при сопровождении воздушного объекта по первичной радиотехнической информации на четырех приемных постах производят первичную фильтрацию разностно-дальномерной информации о радиотехнической траектории воздушного объекта, при этом движение воздушного объекта принимают прямолинейным и равномерным, а в противном случае - принимают за маневр, составляют модель движения воздушного объекта, матрицу производной функции наблюдения и находят экстраполированное значение вектора состояния и ковариационной матрицы ошибок на приемных постах по первичной фиксации разности времен прихода сигнала от цели, поступившей от одной пары информационных датчиков по новому воздушному объекту, далее производят окончательную фильтрацию информации с получением уточненного вектора параметров траектории каждого воздушного объекта и алгоритмической ковариационной матрицы ошибок параметров наблюдения приемных постов, выдают точную оценку параметров траектории каждого воздушного объекта для четкого отслеживания характера и параметров его полета, при этом на приемных постах фильтрацию разностно-дальномерной информации по воздушному объекту и по времени ее поступления производят определенным образом. 2 н.п. ф-лы, 5 ил., 1 табл.

Формула изобретения RU 2 599 259 C1

1. Способ получения радиотехнической информации станциями радиотехнической разведки в составе многопозиционного комплекса пассивной локации с последовательным сканированием радиоизлучений от воздушных объектов, заключающийся в том, что синхронизированными между собой по времени и разнесенными на местности каждой парой приемных постов станций радиотехнической разведки через датчики с последовательным сканированием по частоте получают данные пассивного радиоизлучения от воздушных объектов - разность времени приема радиоизлучения, несущую частоту бортового радиоэлектронного средства воздушного объекта и момент времени получения измерения пеленга, данные направляют на центральный приемный пост, преобразуют в единую центральную декартову систему координат с началом в центральном приемном посту и привязывают к имеющимся на сопровождении радиотехническим траекториям воздушных объектов, на множестве изолированных радиотехнических отметок по воздушному объекту, сформированных при сканировании, производят операцию фильтрации результатов решения разностно-дальномерной задачи обнаружения радиотехнической траектории воздушного объекта в следующей последовательности: определяют размеры стробов автозахвата воздушных объектов, где x, y, z - координаты воздушного объекта, хЭ, уЭ, zЭ - экстраполированные координаты воздушного объекта, вычисляют начальные параметры траектории и их подтверждение по решению (v/m-l) об обнаружении при появлении v отметок в m смежных обзорах при отсутствии отметок в l смежных обзорах, устанавливают векторы S(t) состояния траектории воздушного объекта, составляют модель движения воздушного объекта как S(t+Δt)=FΔt·S(t), где Δt=tk+1-tk - период обзора, FΔt - матрица перехода траектории воздушного объекта при маневрировании, получают матрицу Hn(S) производной функции наблюдения , для каждой пары информационных датчиков, вычисляют экстраполированные значения вектора состояния Sk+l=FΔt·S(t) и алгоритмической ковариационной матрицы Qk+1=FΔt·Qk·(FΔt)T, - вектор экстраполяции разностей дальности, а также матрицу производной функции наблюдения в виде , рассчитывают дисперсионную ошибку экстраполяции в пространстве наблюдаемых параметров , вычисляют отклонение ΔRn, на tk+1 шаге наблюдения, от ожидаемого наблюдения при произведенной экстраполяции , определяют коэффициент усиления , где σ0 - среднеквадратическая ошибка измерения времени прихода сигнала, уточняют значение вектора состояния и алгоритмическую ковариационную матрицу , где Т - знак транспонирования, Е - диагональная единичная матрица, и производят оценку работы фильтра при сглаживании разности времен прихода сигнала на станции радиотехнической разведки по частному показателю среднеквадратического отклонения ошибки измерения плоскостных координат , где - расстояние от цели до оценки координат в момент времени t, Nреал - количество реализаций (Nреал≥1000), отличающийся тем, что при сопровождении воздушного объекта по первичной радиотехнической информации на приемных постах производят одновременную первичную фильтрацию отдельных разностей времени прихода сигналов по времени их поступления, при этом движение воздушного объекта принимают прямолинейным и равномерным, а в противном случае - принимают за маневр, а формирование начальной оценки приближенного вектора параметров траектории воздушного объекта и ковариационной матрицы ошибок на приемных постах производят по первой фиксации разности времен прихода сигнала от цели, поступившей от одной пары информационных датчиков по новому воздушному объекту, далее производят окончательную фильтрацию информации с получением уточненного вектора параметров траектории каждого воздушного объекта и алгоритмической ковариационной матрицы ошибок параметров наблюдения приемных постов, выдают точную оценку параметров траектории каждого воздушного объекта для четкого отслеживания характера и параметров его полета, при этом на приемных постах фильтрацию разностно-дальномерной информации по воздушному объекту по времени ее поступления производят следующим образом: задают вектор состояния траектории воздушного объекта в виде S(t)=(х, у, z, Vx, Vy, Vz), где Vx, Vy, Vz - проекции вектора скорости координат x, y, z, фильтрацию координатной информации по зависимости
где Rn={R1,2, R1,3, R1,4} - разность дальностей прихода сигналов; τn - разности времени прихода сигналов; порядковый номер групп пары i-х приемных постов от источника радиолокационной информации в эти приемные посты Rn=(с·τ1; с·τ2; с·τ3)Т, с* - скорость света (с*≈3·108 м/с); далее с учетом влияния ошибок экстраполяции производят сглаживание ошибок разности времен прихода сигнала, при этом
матрицу производной функции наблюдения выражают в виде , где

2. Устройство радиотехнического комплекса пассивной локации с последовательным сканированием радиоизлучений воздушных объектов, состоящее из приемных постов с информационными датчиками станции радиотехнической разведки, способных измерять в азимутальной плоскости направления движения воздушных объектов с излучающими радиоэлектронными средствами и фиксировать момент перехода импульсов от излучающих средств при смене направления движения воздушного объекта, сканировать по частоте и определять местоположение воздушного объекта путем решения разностно-дальномерной задачи и оснащенных электронных блоков автозахвата в стробе размером , где х, у, z - координаты воздушного объекта, хЭ, уЭ, zЭ - экстраполированные координаты воздушного объекта, а также блока трассового сопровождения воздушных объектов с фильтром Калмана динамики воздушных объектов, достигается тем, что фильтр динамики воздушных объектов на каждом из приемных постов составлен из электронного блока установки вектора состояния воздушного объекта S(t)=(х, у, z, Vx, Vy, Vz), где Vx, Vy, Vz - проекции вектора скорости координат x, y, z, производящего фильтрацию координатной информации по зависимостям

где Rn={R1,2, R1,3, R1,4} - разность дальностей прихода сигналов τn; порядковый номер групп пары i-х приемных постов от источника радиолокационной информации в эти приемные посты Rn=(с·τ1; с·τ2; с·τ3)Т, с* - скорость света (с*≈3·108 м/с); далее с учетом влияния ошибок экстраполяции производят сглаживание ошибок разности времен прихода сигнала, при этом матрицу производной функции наблюдения выражают в виде , где

блока вычисления экстраполированного значения вектора состояния Sk+1=FΔt·S(t), блока определения коэффициента усиления k, блока уточнения вектора состояния S(t) и алгоритмической ковариационной матрицы, а также блока оценки работы фильтра при сглаживании разности времен прихода сигнала на станции радиотехнической разведки.

Документы, цитированные в отчете о поиске Патент 2016 года RU2599259C1

СПОСОБ ПОЛУЧЕНИЯ РАДИОТЕХНИЧЕСКОЙ ИНФОРМАЦИИ И РАДИОТЕХНИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Бондаренко Алексей Викторович
  • Вакуленко Александр Александрович
  • Геращенко Сергей Васильевич
  • Лобанов Александр Александрович
  • Першикова Татьяна Валерьевна
  • Смирнов Антон Анатольевич
RU2562616C1
СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЙ ПРИ АМПЛИТУДНО-ФАЗОВОЙ ПЕЛЕНГАЦИИ С БОРТА ЛЕТАТЕЛЬНОГО АППАРАТА 2010
  • Вассенков Алексей Викторович
  • Гузенко Олег Борисович
  • Дикарев Анатолий Семенович
  • Изюмов Виктор Александрович
  • Скобелкин Владимир Николаевич
RU2432580C1
СПОСОБ СТРОБОВОГО ОТОЖДЕСТВЛЕНИЯ СИГНАЛОВ С ИСТОЧНИКАМИ РАДИОИЗЛУЧЕНИЯ В МНОГОЦЕЛЕВОЙ ОБСТАНОВКЕ 2014
  • Верба Владимир Степанович
  • Васильев Александр Владимирович
  • Гребенников Виталий Борисович
  • Косогор Алексей Александрович
  • Логвиненко Евгений Леонидович
  • Меркулов Владимир Иванович
  • Тетеруков Александр Григорьевич
RU2557784C1
СПОСОБ ОБНАРУЖЕНИЯ ИСТОЧНИКОВ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ В ПРЕДЕЛАХ КОНТРОЛИРУЕМОЙ ЗОНЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2002
  • Ашихмин А.В.
  • Быковников В.В.
  • Виноградов А.Д.
  • Рембовский А.М.
RU2206101C1
WO 2005045459 A3, 07.07.2005
US 5406291 A, 11.04.1995
WO 2007142532 A1, 13.12.2007.

RU 2 599 259 C1

Авторы

Бондаренко Алексей Викторович

Даты

2016-10-10Публикация

2015-11-05Подача