Способ получения координационного соединения меди(II) с пиколиновой кислотой Российский патент 2018 года по МПК C07F1/08 C07D213/79 

Описание патента на изобретение RU2654464C1

Изобретение относится к синтезу химических веществ, а именно к синтезу пиколинатов металлов, которые находят применение в качестве биологически активных добавок в медицине.

Известен способ получения координационных соединения хрома с производными пиколиновой кислоты (6-метилпиколиновой кислотой и 3-аминопиколиновой кислотой), заключающийся в постепенном прибавлении водного раствора лиганда с добавкой триэтиламина к раствору нитрата хрома при температуре 100°C и перемешивании в течение часа (Liu В., Liu Y., Chai J., Hu X. et al. Chemical properties and biotoxicity of several chromium picolinate derivatives / Journal of Inorganic Biochemistry. 2016. - Vol. 164. - P. 110-118). Недостатками данного метода являются длительность выделения продукта из раствора (медленное упаривание раствора при комнатной температуре) и невысокий выход (47-53%).

Известен способ получения пиколината меди, заключающийся в добавлении метанольного раствора ацетата меди(II) к этанольному раствору 2-пиридилметилфосфоната (2-pmpe) (, В., Ochocki, J., , J., Ciunika, Z. et al. Synthesis, spectroscopic and magnetostructural evidence for the formation of Cu(II) complexes of pyridyl-2-carboxylate (2-pca) and quinolyl-2-carboxylate (2-qca) as a result of a novel oxidative P-dealkylation reaction of diethyl 2-pyridylmethylphosphonate (2-pmpe) and diethyl 2-quinolylmethylphosphonate (2-qmpe) ligands / Inorganica Chimica Acta. 2004. - Vol. 357. - Iss. 3. - P. 755-763). После упаривания реакционной смеси образовывались зеленые кристаллы смешаннолигандного соединения [Cu(CH3COO)2(2-pmpe)], повторное растворение которых в этаноле с последующим упариванием приводило к формированию кристаллов целевого продукта. Недостатком метода является многостадийность процесса синтеза.

Наиболее близким аналогом предлагаемого способа является способ получения пиколината меди, заключающийся в прибавлении нитрила пиколиновой кислоты к водному раствору хлорида меди, содержащему добавку 2-амино-1,3-пропандиола; кристаллы продукта были выделены после кипячения реакционной смеси с обратным холодильником в течение 32 ч. (, М., Koman, М., , J. et al. Metal(II)-promoted hydrolysis of pyridine-2-carbonitrile to pyridine-2-carboxylic acid. The structure of [Cu(pyridine-2-carboxylate)2]⋅2H2O / Polyhedron. 1998. - Vol. 17. - Iss. 25-26. - P. 4525-4533). Недостатком метода являются очень высокие временные затраты на выделение целевого продукта.

Техническим результатом является получение комплексного соединения меди с пиколиновой кислотой (HPic) с меньшими временными затратами.

Технический результат достигается за счет проведения электролиза раствора пиколиновой кислоты с медными электродами при постоянном токе, отделения осадка, промывки осадка и его сушки. В качестве растворителя применяют систему диметилформамид:вода с объемным соотношением компонентов 90:10, в качестве фонового электролита используют хлорид калия. Массовое соотношение ДМФА:вода:пиколиновая кислота:электролит составляет 85,00:10,00:2,50:0,05, плотность тока - 5-8 мА/см2.

Общими с прототипом признаками являются:

- взаимодействие металла с лигандом (пиколиновой кислотой или ее производным);

- присутствие органического растворителя;

- отделение осадка.

Отличительные признаки заявляемого изобретения:

- электролиз раствора;

- применение в качестве растворителя системы ДМФА:вода в объемном соотношении 90:10;

- использование в качестве фонового электролита хлорида калия;

- массовое соотношение ДМФА:вода:пиколиновая кислота:электролит, составляющее 85,00:10,00:2,50:0,05;

- плотность тока - 5-8 мА/см2.

На фигуре 1 представлен ИК-спектр синтезированного комплексного соединения; на фигуре 2 - ИК-спектр пиколиновой кислоты.

Состав растворителя был подобран экспериментально на основе максимального выхода целевого продукта.

Корректность выбора условий синтеза может быть подтверждена данными, приведенными в таблицах 1, 2.

Экспериментально установлено, что при плотности тока менее 5 мА/см2 синтез практически не протекает, а при значениях выше 8 мА/см2 наблюдается заметная эрозия электрода, что вызывает загрязнение полученного целевого продукта порошком меди. Это было установлено путем измерения оптической плотности раствора через 30 минут после начала синтеза (оптическая плотность пропорциональна количеству комплексного соединения, накопившегося в растворе). Соответствующие данные приводятся в таблице 1.

Состав растворителя подобран экспериментально, исходя из максимальной растворимости пиколиновой кислоты и минимальной растворимости целевого продукта. Соответствующие данные приведены в таблице 2.

Пример конкретного выполнения: В двухэлектродную бездиафрагменную ячейку, снабженную двумя медными электродами (объем ячейки 200 мл), помещали 100 мл раствора, содержащего 2,5 г пиколиновой кислоты (состав растворителя - 90 мл ДМФА : 10 мл воды) и 0,05 г хлорида калия, через ячейку пропускали постоянный электрический ток; плотность тока - 8 мА/см2.

Через 2 часа выпавший на дно ячейки осадок отфильтровали, высушили на воздухе и анализировали: на содержание металла - методом трилонометрического титрования с мурексидом, на содержание пиколиновой кислоты - методом термического анализа. Данным методом также показано отсутствие сольватной и координированной воды в составе синтезированного соединения. Выход - 76%, результаты анализа на содержание меди и лиганда приведены в таблице 3:

ωCu - массовая доля меди, ωPic - массовая доля пиколиновой кислоты

В ИК-спектре синтезированного соединения (Фиг. 1) исчезает полоса поглощения в области 1700 см-1, характерная для валентных колебаний карбоксильной группы в ИК-спектре пиколиновой кислоты (Фиг. 2), и появляются полосы при 1650 и 1350 см-1, характерные для валентных колебаний пиколинат-иона. Разность симметричных и асимметричных колебаний карбоксильной группы, превышающая 160 см-1, свидетельствует о моно-дентатной координации лиганда по карбоксильной группе. Кроме того, в ИК-спектре полученного продукта наблюдается смещение полос в области 1400-1600 см-1, относящихся к колебаниям связей С-N и С-С ароматического цикла, что служит свидетельством координации пиколиновой кислоты также по атому азота пиридинового кольца.

На основании представленных данных можно сделать вывод о том, что технический результат - уменьшение временных затрат - достигается. Время синтеза необходимое для получения целевого продукта уменьшилось в 16 раз. Такой результат обеспечили отличительные признаки предлагаемого способа. Таким образом, заявляемый способ удовлетворяет критериям охраноспособости, т.е. является изобретением.

Похожие патенты RU2654464C1

название год авторы номер документа
Способ получения координационного соединения цинка с пиколиновой кислотой 2019
  • Зеленов Валерий Игоревич
  • Андрийченко Елена Олеговна
  • Бовыка Валентина Евгеньевна
  • Екотова Елизавета Олеговна
RU2711449C1
СПОСОБ ПОЛУЧЕНИЯ КООРДИНАЦИОННОГО СОЕДИНЕНИЯ МЕДИ(II) С НИКОТИНОВОЙ КИСЛОТОЙ 2017
  • Зеленов Валерий Игоревич
  • Андрийченко Елена Олеговна
RU2647072C1
Способ получения тетра-1,10-фенантролин-μ-фумарат-димеди(II) хлорида 2019
  • Зеленов Валерий Игоревич
  • Андрийченко Елена Олеговна
  • Синецкая Людмила Владимировна
  • Бовыка Валентина Евгеньевна
RU2702119C1
Способ получения наночастиц оксида меди(II) 2020
  • Зеленов Валерий Игоревич
  • Андрийченко Елена Олеговна
  • Бовыка Валентина Евгеньевна
RU2747435C1
Способ получения пористых микроволокон оксида меди(II) 2023
  • Зеленов Валерий Игоревич
  • Андрийченко Елена Олеговна
  • Бовыка Валентина Евгеньевна
  • Шуликова Арина Геннадьевна
  • Панина Екатерина Константиновна
RU2813055C1
СПОСОБ ПОЛУЧЕНИЯ КООРДИНАЦИОННОГО СОЕДИНЕНИЯ ЦИНКА С НИКОТИНОВОЙ КИСЛОТОЙ 2016
  • Зеленов Валерий Игоревич
  • Андрийченко Елена Олеговна
  • Ткачев Никита Владимирович
RU2618533C1
Способ получения координационного соединения меди(II) с 2,3,4,5-тетрагидро-2-имино-4-оксо-1,3-тиазол-5-уксусной кислотой 2021
  • Зеленов Валерий Игоревич
  • Доценко Виктор Викторович
  • Андрийченко Елена Олеговна
  • Бовыка Валентина Евгеньевна
RU2774950C1
Способ электрохимического получения координационного соединения цинка (II) 2021
  • Зеленов Валерий Игоревич
  • Доценко Виктор Викторович
  • Андрийченко Елена Олеговна
  • Бовыка Валентина Евгеньевна
RU2780198C1
СПОСОБ ПОЛУЧЕНИЯ КООРДИНАЦИОННОГО СОЕДИНЕНИЯ МЕДИ(II) С 1,10-ФЕНАНТРОЛИНОМ И DL-ТРИПТОФАНОМ 2014
  • Зеленов Валерий Игоревич
  • Андрийченко Елена Олеговна
RU2584007C1
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНОГО СОЕДИНЕНИЯ МЕДИ С ПИРИДОКСИНОМ 2009
  • Зеленов Валерий Игоревич
  • Цокур Марина Николаевна
  • Шабанова Ирина Вячеславовна
RU2415860C1

Иллюстрации к изобретению RU 2 654 464 C1

Реферат патента 2018 года Способ получения координационного соединения меди(II) с пиколиновой кислотой

Изобретение относится к способу получения комплексного пиколината меди(II). Способ включает взаимодействие металла с лигандом в присутствии органического растворителя с последующим отделением осадка. В качестве растворителя применяется система диметилформамид:вода с объемным соотношением компонентов 90:10. Взаимодействие осуществляют путем электролиза раствора пиколиновой кислоты с медными электродами и хлоридом калия в качестве фонового электролита. Массовое соотношение ДМФА:вода:пиколиновая кислота:электролит составляет 85,00:10,00:2,50:0,05, плотность постоянного электрического тока - 5-8 мА/см2. Изобретение позволяет получить пиколинат меди(II) с меньшими временными затратами. 2 ил., 3 табл., 1 пр.

Формула изобретения RU 2 654 464 C1

Способ получения комплексного пиколината меди(II), включающий взаимодействие металла с лигандом в присутствии органического растворителя с последующим отделением осадка, отличающийся тем, что в качестве растворителя применяется система диметилформамид:вода с объемным соотношением компонентов 90:10, взаимодействие осуществляют путем электролиза раствора пиколиновой кислоты с медными электродами и хлоридом калия в качестве фонового электролита, при этом массовое соотношение ДМФА:вода:пиколиновая кислота:электролит составляет 85,00:10,00:2,50:0,05, плотность постоянного электрического тока - 5-8 мА/см2, полученный в результате электролиза осадок отделяют.

Документы, цитированные в отчете о поиске Патент 2018 года RU2654464C1

SEGL'A P
et al
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ использования делительного аппарата ровничных (чесальных) машин, предназначенных для мериносовой шерсти, с целью переработки на них грубых шерстей 1921
  • Меньщиков В.Е.
SU18A1
Видоизменение пишущей машины для тюркско-арабского шрифта 1923
  • Мадьяров А.
  • Туганов Т.
SU25A1
УСТРОЙСТВО ДЛЯ ПРЕДУПРЕЖДЕНИЯ СТОЛКНОВЕНИЙ ПОЕЗДОВ 1925
  • Гилельсберг З.Б.
SU4525A1
ZUROWSKA B
et al
Synthesis, spectroscopic and magnetostructural evidence for the formation of Cu(II) complexes of pyridyl-2-carboxylate (2-pca) and quinolyl-2-carboxylate (2-qca) as a result of a novel oxidative P-dealkylation reaction of diethyl 2-pyridylmethylphosphonate (2-pmpe) and diethyl 2-quinolylmethylphosphonate (2-qmpe) ligands, Inorganica Chimica Acta, 2004, v
Клапан 1919
  • Шефталь Н.Б.
SU357A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Судовой движитель 1923
  • Кальсин П.Е.
SU755A1
EP 0001529775 B1, 19.04.2006
CN 103450231 A, 18.12.2013
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНОГО СОЕДИНЕНИЯ МЕДИ С ПИРИДОКСИНОМ 2009
  • Зеленов Валерий Игоревич
  • Цокур Марина Николаевна
  • Шабанова Ирина Вячеславовна
RU2415860C1

RU 2 654 464 C1

Авторы

Зеленов Валерий Игоревич

Андрийченко Елена Олеговна

Екотова Елизавета Олеговна

Даты

2018-05-18Публикация

2017-12-27Подача