Депрессорно-диспергирующая присадка к дизельному топливу, способ ее получения и способ получения депрессорного и диспергирующего компонентов депрессорно-диспергирующей присадки Российский патент 2019 года по МПК C10L1/18 C10L1/196 C10L1/192 C08F8/46 C08F36/00 C08F136/00 C08F236/00 

Описание патента на изобретение RU2684412C1

Изобретение относится к области нефтепереработки и нефтехимии, в частности к способу получения депрессорно-диспергирующей присадки к дизельным топливам, содержащей 30-70 масс % депрессорного и 30-70 масс % диспергирующего компонентов присадки. А также к способу получения ее компонентов: депрессорного - сополимеризацией малеинового ангидрида и смеси 1-олефинов, диспергирующего - метатезисной сополимеризацией олефинов, бутадиенового каучука (СКД) и функционализированных производных дициклопентадиена (ДЦПД).

Технологии получения компонентов депрессорно-диспергирующих присадок к дизельным топливам, как правило, многостадийны, неэкологичны, характеризуются высокими энергозатратами и жесткими условиями протекания реакций (высокие давления и температуры); требуют применения дорогостоящих, часто токсичных, исходных реагентов.

Известна комплексная присадка к дизельному топливу, содержащая 3-100 масс % полициклоалканов и 0-70 масс % сополимеров этилен-винилацетата, эфиров акриловой и метакриловой кислот, малеинового ангидрида и алкенилсукцинамидов в качестве депрессорного компонента и производных полиизобутиленсукцинимида в качестве диспергирующего компонента. CN 105273780 А, опубл. 27.01.2016.

К недостаткам присадки можно отнести многокомпонентность полимерного депрессорного компонента и большие энергозатраты при его получении, а также малодоступность полициклических алканов и токсичность реагентов при производстве диспергирующего компонента.

Известна присадка к дизельному топливу, содержащая в качестве депрессорного компонента сополимер высших эфиров C8-C28 акриловой или метакриловой кислоты с этиленненасыщенными мономерами (до 60 масс %) и в качестве диспергирующего компонента алкил(С125) сукцинимид (0,1-10 масс %), непредельную жирную кислоту, выбранную из группы олеиновая, линолевая или леноленовая, или ее амид (до 100 масс %). Присадка применяется в количестве 0,01-1,0 масс %. RU 2320706 С1, опубл. 27.03.2008.

Недостатком данной присадки является то, что присадка представляет сложную смесь компонентов, для получения которой используются дорогостоящие мономеры. Кроме того не заявлено о седиментационной устойчивости дизельного топлива с присадкой при его холодном хранении.

Известна многофункциональная присадка к дизельным топливам, имеющая в своем составе в качестве депрессорного компонента сополимеры сложных эфиров акриловой кислоты и высших жирных спиртов, этилена и винилацетата, олигомеров полипропилена и малеинового ангидрида или полиметакрилатов и полиэтилена, а также алкиламинофенолы в качестве диспергирующего компонента. CN 103275775 А, опубл. 04.09.2013.

Недостатком способа является токсичность производных аминофенола, используемых при получении диспергирующего компонента, а также высокая стоимость мономеров (акрилатов и метакрилатов) и жесткие условия синтеза депрессорного компонента присадки.

Известна композиционная присадка, улучшающая низкотемпературные характеристики дизельных топлив, содержащая 60-94 масс % антиседиментационного компонента, полученного из алифатической дикарбоновой кислоты и полиамина С232, и 6-40 масс % депресорного компонента, полученного полимеризацией сложных эфиров высших спиртов С624 и малеиновой кислоты с молекулярной массой 15000-50000. US 5725610 А, опубл. 10.05.1998.

К недостаткам присадки можно отнести высокую стоимость и токсичность исходных реагентов для получения компонентов присадки.

Известна комплексная присадка в дизельное топливо, содержащая в качестве депрессорного компонента сополимер винилацетата и этилена и алкилсукцинимидные производные в качестве диспергирующего компонента. CN 103642547 А, опубл. 19.13.2014.

К недостаткам способа можно отнести токсичность исходных реагентов при производстве диспергирующего компонента присадки, а также использование высоких давления до 200 МПа и температур порядка 180-250°С при синтезе депрессорного компонента присадки.

Известна присадка к дизельному топливу, содержащая 40-50 масс % сополимера винилацетата и эфиров фумаровой кислоты, 40-50 масс % сополимера этилена и винилацетата в качестве депрессорного компонента и 5-10 масс % продуктов раскрытия фталевого ангидрида высшими жирными спиртами и аминами в качестве диспергирующего компонента. Известен способ получения ее компонентов, заключающийся в сополимеризации различных сложных эфиров фумаровой кислоты, получаемых из фумаровой кислоты и высших спиртов, и винилацетата в присутствии радикальных инициаторов полимеризации, а также этилена и винилацетата для получения депрессорного компонента. Диспергирующий компонент получают реакцией фталевого ангидрида с высшими аминами и спиртами в кислой среде в толуоле или циклогексане при температуре порядка 130°С. CN 104818060 А, опубл. 05.08.2015.

К недостаткам способа можно отнести использование высоких давления и температур при синтезе сополимера этилена и винилацетата, также использование дорогостоящих высших аминов и спиртов.

Наиболее близким к заявляемому является композиционная присадка к дизельным топливам, содержащая депрессор - 21-71 масс % низкомолекулярных деструктатов этилен-пропиленового каучука СКЭПТ-Р с молекулярной массой 600-3500 и молекулярно-массовым распределением от 1,5 до 3,5 и диспергатор - 24-64 масс % низкомолекулярного сополимера этилена с винилацетатом с молекулярной массой 1200-2600 и содержанием звеньев винилацетата 25-45 масс %. В качестве дополнительного компонента присадка содержит олигомеры этилена C16-C18 и олигомеры пропилена С15 или толуол. RU 2278150 С1, опубл. 20.06.2006.

К недостаткам способа можно отнести мультикомпонентность полимерного состава присадки, а также использование высоких давления до 200 МПа и температуры порядка 180-250°С при синтезе полимерных компонентов присадки. Кроме того, не заявлено о седиментационной устойчивости дизельного топлива с присадкой при его холодном хранении.

Технической задачей заявленной группы изобретений является создание эффективной депрессорно-диспергирующей присадки к дизельному топливу, а также разработка способа получения депрессорно-диспергирующей присадки и простого способа получения депрессорного и диспергирующего компонентов присадки из недорогих нетоксичных исходных продуктов.

Технический результат от реализации заявленной группы изобретений заключается в снижении температуры застывания дизельного топлива на 20-26°С, снижении предельной температуры фильтруемости дизельного топлива на 20-27°С, а также обеспечении седиментационной устойчивости при его холодном хранении, повышении выхода целевых продуктов до 95 масс %.

Технический результат достигается тем, что депрессорно-диспергирующая присадка к дизельному топливу, содержащая смесь депрессорного и диспергирующего компонентов, согласно изобретению, она в качестве депрессорного компонента содержит полимерное соединение, полученное реакцией радикальной сополимеризации малеинового ангидрида и фракции 1-олефинов С8-С24 с участием инициатора радикальной полимеризации, с соотношением исходных реагентов от 1:0,92 до 1:3,7 при температуре 75-90°С в течение 8-23 ч в соответствующем растворителе, после которой упаривают растворитель и выделяют целевой продукт, а в качестве диспергирующего компонента - полимерное соединение, полученное реакцией метатезисной сополимеризации функционализированного норборнена и синтетического дивинилового каучука и 1-гексена или 1-октена в присутствии металлокомплексного диалкильного рутениевого катализатора общей формулы:

где заместители R3 и R4 выбраны из группы: R3=Me, Et, R4=Et, Bn, R3+R4=CH2CH2OCH2CH2, в соответствующем растворителе, при соотношении функционализированный норборнен: каучук от 1:15 до 1:1, соотношении катализатор: олефины в реакционной смеси от 1:350000 до 1:10000, при температуре 25-70°С в течение 8-23 ч, затем реакционную смесь гидрируют водородом при давлении 5-10 атм в присутствии палладия, далее фильтруют через окись алюминия и фильтрат упаривают, причем депрессорный и диспергирующий компоненты находятся в присадке в соотношении от 3:7 до 7:3 по объему.

Для депрессорного компонента соответствующий растворитель может быть выбран из бензола, толуола, ксилола, дихлорэтана, дихлорпропана или хлороформа.

Инициатор радикальной полимеризации может быть выбран из дибензоилпероксида или азо-бис-изобутиронитрила.

Для синтеза может быть использован функционализированный

норборнен общей формулы: где заместители R1 и R2 выбраны из группы: R1=Н и Me, a R2=Me, Et, n-Pr, i-Pr, n-Bu, i-Bu.

Для диспергирующего компонента соответствующий растворитель может быть выбран из толуола или ксилола.

Для получения депрессорно-диспергирующей присадки к дизельному топливу, компоненты присадки отдельно растворяют в толуоле, полученные растворы объединяют и перемешивают в течение 30-50 мин, после чего толуол из полученной смеси удаляют.

Выход полученного полимерного депрессорного компонента присадки составляет до 95 масс %.

Выход полученного полимерного диспергирующего компонента присадки составляет 95 масс %.

Изобретение иллюстрируется следующими примерами.

Примеры 1-6 описывают получение депрессорного компонента (ДП).

Пример 1

К раствору 1,95 г малеинового ангидрида, 3,6 г смеси 1-олефинов С824 в 6 мл толуола при температуре 90°С добавляют 0,125 г инициатора радикальной полимеризации дибензоилпероксида и перемешивают в течение 23 ч при температуре 90°С. Реакционную смесь упаривают и получают остаток - 5,3 г (выход 95 масс %) депрессорного компонента ДП-1.

Полученный полимерный продукт используют в качестве депрессорного компонента депрессорно-диспергирующей присадки к дизельному топливу и вводят в составе депрессорно-диспергирующей присадки в базовое дизельное топливо с температурой застывания минус 8°С, предельной температурой фильтруемости минус 6°С и температурой помутнения минус 5°С. Полученные данные температуры застывания и предельной температуры фильтруемости дизельного топлива с присадкой сведены в таблицу и представлены вместе с последующими экспериментами.

Пример 2

Осуществляют аналогично Примеру 1, но вместо толуола берут бензол, вместо 0,125 г дибензоилпероксида добавляют 0,085 г азо-бис-изобутиронитрила, вместо 3,6 г берут 7,2 г смеси 1-олефинов С824,. Получают 8,2 г (выход 90 масс %) депрессорного компонента ДП-2.

Пример 3

Осуществляют аналогично Примеру 1, но вместо толуола берут ксилол, вместо 3,6 г берут 1,8 г смеси 1-олефинов C8-C24. Получают 3,5 г (выход 94 масс %) депрессорного компонента ДП-3.

Пример 4

Осуществляют аналогично Примеру 1, но вместо толуола берут дихлорэтан, вместо перемешивания в течение 23 ч, перемешивают в течение 8 ч, при температуре 75°С. Получают 4,7 г (выход 85 масс %) депрессорного компонента депрессорно-диспергирующей присадки к дизельному топливу ДП-4.

Пример 5

Осуществляют аналогично Примеру 2, но вместо толуола берут дихлорпропан, вместо перемешиванияв течение 23 ч, перемешивают в течение 8 ч, при температуре 90°С. Получают 7,4 г (выход 81 масс %) депрессорного компонента ДП-5.

Пример 6

Осуществляют аналогично Примеру 3, но вместо толуола берут хлороформ, вместо перемешивания в течение 23 ч, перемешивают в течение 8 ч, при температуре 90°С. Получают 3,1 г (выход 83 масс %) депрессорного компонента депрессорно-диспергирующей присадки к дизельному топливу ДП-6.

Примеры 7- 18 описывают получение диспергирующего компонента (ДГ).

Пример 7

К раствору 0,46 г метил бицикло[2.2.1]гепт-5-ен-2-карбоксилата, 1,6 г СКД (соотношение 1:10) и 0,25 г гексена-1 в 10 мл толуола при температуре 70°С добавляют раствор (мольное соотношение 1:100000 катализатор: олефины) 0,2 мг диэтильного рутениевого металлокомплексного катализатора К1 в 0,1 мл толуола и перемешивают при температуре 70°С в течение 8 ч, затем реакционную смесь гидрируют водородом при давлении 10 атм в присутствии палладия, далее фильтруют через окись алюминия и фильтрат упаривают. Получают 2,2 г (выход 94 масс %) диспергирующего компонента депрессорно-диспергирующей присадки ДГ-1 к ДТ.

Полученный полимерный продукт используют в качестве диспергирующего компонента депрессорно-диспергирующей присадки к дизельному топливу и вводят в состав депрессорно-диспергирующей присадки в базовое дизельное топливо с температурой застывания минус 8°С, предельной температурой фильтруемости минус 6°С и температурой помутнения минус 5°С. Для определения седиментационной устойчивости, дизельное топливо с депрессорно-диспергирующей присадкой выдерживали, в соответствии с методикой ВНИИНП, в течение 16 ч при температуре минус 10°С, затем определяли предельную температуру фильтруемости верхнего и нижнего слоев топлива. Полученные данные температуры застывания и предельной температуры фильтруемости дизельного топлива с присадкой сведены в таблицу и представлены вместе с последующими экспериментами.

Пример 8

Получение диспергирующего компонента (ДГ) осуществляют аналогично примеру 7, но вместо 0,2 мг (1:100000) катализатора К1 добавляют 0,9 мг (1:15000) катализатора К2, соотношение замещенный норборнен: СКД берут 1:5, 0,5 г этил бицикло[2.2.1]гепт-5-ен-2-карбоксилата и 0,8 г СКД, вместо 0,25 г гексена-1, берут 0,34 г 1-октена, реакцию проводят при температуре 25°С в течение 23 ч. После гидрирования, фильтрации и упаривания получают 1,5 г (выход 94 масс %) диспергирующего компонента ДГ-2.

Пример 9

Пример аналогичен примеру 7, но вместо 0,2 мг (1:100000) катализатора К1 добавляют 0,02 мг (1:300000) катализатора К3, соотношение замещенный норборнен: СКД берут 1:1, 0,6 г пропил бицикло[2.2.1]гепт-5-ен-2-карбоксилата и 0,2 г СКД, полимеризацию проводят при температуре 60°С в течение 2 ч. После гидрирования, фильтрации и упаривания получают 0,89 г (выход 85 масс %) диспергирующего компонента ДГ-3.

Пример 10

Пример аналогичен примеру 7, но вместо 0,2 мг (1:100000) катализатора К1 добавляют 0,1 мг (1:350000) катализатора К1, соотношение замещенный норборнен: СКД берут 1:15, 0,6 г изопропил бицикло[2.2.1]гепт-5-ен-2-карбоксилата и 2,4 г СКД, полимеризацию проводят при температуре 50°С в течение 8 ч. После гидрирования, фильтрации и упаривания получают 2,9 г (выход 90 масс %) диспергирующего компонента ДГ-4.

Пример 11

Пример аналогичен примеру 7, но вместо 0,2 мг (1:100000) катализатора К1 добавляют 2 мг (1:10000) катализатора К2, соотношение замещенный норборнен: СКД берут 1:10, 0,6 г н-бутил бицикло[2.2.1]гепт-5-ен-2-карбоксилата и 1,6 г СКД, полимеризацию проводят при температуре 40°С в течение 10 ч. После гидрирования, фильтрации и упаривания получают 2,2 г (выход 91 масс %) диспергирующиего компонента ДГ-5.

Пример 12

Пример аналогичен примеру 7, но вместо 0,2 мг (1:100000) катализатора К1 добавляют 0,2 мг (1:100000) катализатора К3, соотношение замещенный норборнен: СКД берут 1:10, 0,6 г изобутил бицикло[2.2.1]гепт-5-ен-2-карбоксилата и 1,6 г СКД, вместо 0,25 гексена-1, берут 0,34 г 1-октена, полимеризацию проводят при температуре 30°С в течение 12 ч. После гидрирования, фильтрации и упаривания получают 2,1 г (выход 93 масс %) диспергирующего компонента ДГ-6.

Пример 13

Пример аналогичен примеру 7, но вместо 0,2 мг (1:100000) катализатора К1 добавляют 0,3 мг (1:50000) катализатора К1, соотношение замещенный норборнен: СКД берут 1:5, 0,5 г метил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилата и 0,8 г СКД, полимеризацию проводят при температуре 40°С в течение 14 ч. После гидрирования, фильтрации и упаривания получают 1,5 г (выход 95 масс %) диспергирующего компонента депрессорно-диспергирующей присадки ДГ-7 к ДТ.

Пример 14

Пример аналогичен примеру 7, но вместо 0,2 мг (1:100000) катализатора К1 добавляют 0,2 мг (1:100000) катализатора К2, соотношение замещенный норборнен: СКД берут 1:10, 0,54 г этил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилата и 1,6 г СКД, полимеризацию проводят при температуре 50°С в течение 16 ч. После гидрирования, фильтрации и упаривания получают 2,2 г (выход 95 масс %) диспергирующего компонента ДГ-8.

Пример 15

Пример аналогичен примеру 7, но вместо 0,2 мг (1:100000) катализатора К1 добавляют 0,7 мг (1:50000) катализатора К3, соотношение замещенный норборнен: СКД берут 1:15, 0,54 г н-пропил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилата и 2,4 г СКД, полимеризацию проводят при температуре 60°С в течение 18 ч. После гидрирования, фильтрации и упаривания получают 2,8 г (выход 88 масс %) диспергирующего компонента ДГ-9.

Пример 16

Пример аналогичен примеру 7, но вместо 0,2 мг (1:100000) катализатора К1 добавляют 0,5 мг (1:30000) катализатора К1, соотношение замещенный норборнен: СКД берут 1:5, 0,54 г изопропил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилата и 0,8 г СКД, полимеризацию проводят при температуре 70°С в течение 20 ч. После гидрирования, фильтрации и упаривания получают 1,4 г (выход 89 масс %) диспергирующего компонента ДГ-10.

Пример 17

Пример аналогичен примеру 7, но вместо 0,2 мг (1:100000) катализатора К1 добавляют 0,2 мг (1:100000) катализатора К2, соотношение замещенный норборнен: СКД берут 1:10, 0,6 г н-бутил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилата и 1,6 г СКД, полимеризацию проводят при температуре 60°С в течение 8 ч. После гидрирования, фильтрации и упаривания получают 2,3 г (выход 95 масс %) диспергирующего компонента ДГ-11 депрессорно-диспергирующей присадки.

Пример 18

Пример аналогичен примеру 7, но вместо 0,2 мг (1:100000) катализатора К1 добавляют 0,3 мг (1:100000) катализатора К1, соотношение замещенный норборнен: СКД берут 1:15, 0,6 г изобутил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилата и 2,4 г СКД, полимеризацию проводят при температуре 70°С в течение 8 ч. После гидрирования, фильтрации и упаривания получают 3,0 г (выход 92 масс %) диспергирующего компонента ДГ-12.

Примеры 19-30 описывают получение депрессорно-диспергирующей присадки к дизельному топливу (ДДП).

Пример 19

К раствору 3 г депрессорного компонента (ДП-1) в 5 мл толуола прибавляют раствор 7 г диспергирующего компонента (ДГ-1) в 5 мл толуола. Полученный раствор перемешивают в течение 30 мин при комнатной температуре, затем толуол упаривают, получают 10 г (выход 100 масс %) депрессорно-диспергирующей присадки (ДДП 1).

Пример 20

Осуществляют аналогично Примеру 19, но вместо 3 г депрессорного компонента (ДП-1) берут 7 г депрессорного компонента (ДП-2), вместо 7 г диспергирующего компонента (ДГ-1) берут 3 г диспергирующего компонента (ДГ-2). Получают 10 г (выход 100 масс %) депрессорно-диспергирующей присадки (ДЦП2).

Пример 21

Осуществляют аналогично Примеру 19, но вместо 3 г депрессорного компонента (ДП-1) берут 4 г депрессорного компонента (ДП-3), вместо 7 г диспергирующего компонента (ДГ-1) берут 6 г диспергирующего компонента (ДГ-3). Получают 10 г (выход 100 масс %) депрессорно-диспергирующей присадки ДДП3.

Пример 22

Осуществляют аналогично Примеру 19, но вместо 3 г депрессорного компонента (ДП-1) берут 5 г депрессорного компонента (ДП-4), вместо 7 г диспергирующего компонента (ДГ-1) берут 5 г диспергирующего компонента (ДГ-4). Получают 10 г (выход 100 масс %) депрессорно-диспергирующей присадки ДДП5.

Пример 23

Осуществляют аналогично Примеру 19, но вместо 3 г депрессорного компонента (ДП-1) берут 6 г депрессорного компонента (ДП-5), вместо 7 г диспергирующего компонента (ДГ-1) берут 4 г диспергирующего компонента (ДГ-5). Получают 10 г (выход 100%) - депрессорно-диспергирующей присадки ДДП5.

Пример 24

Осуществляют аналогично Примеру 19, но вместо 3 г депрессорного компонента (ДП-1) берут 7 г депрессорного компонента (ДП-6), вместо 7 г диспергирующего компонента (ДГ-1) берут 3 г диспергирующего компонента (ДГ-6). Получают 10 г (выход 100 масс %) депрессорно-диспергирующей присадки ДДП6.

Пример 25

Осуществляют аналогично Примеру 19, но вместо 3 г депрессорного компонента (ДП-1) берут 5 г депрессорного компонента (ДП-1), вместо 7 г диспергирующего ком масс %) - депрессорно-диспергирующей присадки ДДП7.

Пример 26

Осуществляют аналогично Примеру 19, но вместо 3 г депрессорного компонента (ДП-1) берут 5 г депрессорного компонента (ДП-2), вместо 7 г диспергирующего компонента (ДГ-1) берут 5 г диспергирующего компонента (ДГ-8). Получают 10 г (выход 100 масс %) депрессорно-диспергирующей присадки ДДП8.

Пример 27

Осуществляют аналогично Примеру 19, но вместо 3 г депрессорного компонента (ДП-1) берут 5 г депрессорного компонента (ДП-3), вместо 7 г диспергирующего компонента (ДГ-1) берут 5 г диспергирующего компонента (ДГ-9). Получают 10 г (выход 100 масс %) депрессорно-диспергирующей присадки ДДП9.

Пример 28

Осуществляют аналогично Примеру 19, но вместо 3 г депрессорного компонента (ДП-1) берут 5 г депрессорного компонента (ДП-4), вместо 7 г диспергирующего компонента (ДГ-1) берут 5 г диспергирующего компонента (ДГ-10). Получают 10 г (выход 100 масс %) депрессорно-диспергирующей присадки ДДП 10.

Пример 29

Осуществляют аналогично Примеру 19, но вместо 3 г депрессорного компонента (ДП-1) берут 5 г депрессорного компонента (ДП-5), вместо 7 г диспергирующего компонента (ДГ-1) берут 5 г диспергирующего компонента (ДГ-11). Получают 10 г (выход 100 масс %) - депрессорно-диспергирующей присадки ДДП11.

Пример 30

Осуществляют аналогично Примеру 19, но вместо 3 г депрессорного компонента (ДП-1) берут 5 г депрессорного компонента (ДП-6), вместо 7 г диспергирующего компонента (ДГ-1) берут 5 г диспергирующего компонента (ДГ-12). Получают 10 г (выход 100 масс %) депрессорно-диспергирующей присадки ДДП12.

Введение заявленной депрессорно-диспергирующей присадки в дизельное топливо в концентрации 0,01-0,1 масс % приводит к снижению температуры застывания ДТ на 20-26°С, предельной температуры фильтруемости ДТ на 20-27°С, а также обеспечивает седиментационную устойчивость при его холодном хранении. Разность предельной температуры фильтруемости верхнего и нижнего слоев топлива, после выдерживании в течение 16 ч при температуре минус 9°С, не превышала 3°С, что говорит о седиментационной устойчивости ДТ. Заявленная депрессорно-диспергирующая присадка превосходит ближайший аналог по степени улучшения низкотемпературных характеристик базового дизельного топлива, кроме того обеспечивает седиментационную устойчивость дизельного топлива при его холодном хранении.

Похожие патенты RU2684412C1

название год авторы номер документа
Способ получения диспергирующей присадки к дизельному топливу и диспергирующая присадка к дизельному топливу 2017
  • Полянский Кирилл Борисович
  • Земцов Денис Борисович
  • Панов Дмитрий Михайлович
  • Верещагина Надежда Владимировна
  • Беспалова Наталья Борисовна
  • Рудяк Константин Борисович
RU2647858C1
Депрессорно-диспергирующая присадка к дизельным топливам и способ ее получения 2019
  • Рудяк Константин Борисович
  • Полянский Кирилл Борисович
  • Верещагина Надежда Владимировна
  • Земцов Денис Борисович
  • Бовина Мария Анатольевна
  • Сенин Алексей Александрович
  • Беспалова Наталья Борисовна
RU2715896C1
ДЕПРЕССОРНО-ДИСПЕРГИРУЮЩАЯ ПРИСАДКА К ДИЗЕЛЬНЫМ ТОПЛИВАМ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2020
  • Гималетдинов Рустем Рафаилевич
  • Усманов Марат Радикович
  • Валеев Салават Фанисович
  • Ерохин Антон Алексеевич
  • Лотов Дмитрий Владимирович
  • Зонтов Владимир Владимирович
  • Федорова Александра Вадимовна
RU2756770C1
Способ получения депрессорной присадки к дизельному топливу и депрессорная присадка к дизельному топливу 2017
  • Полянский Кирилл Борисович
  • Земцов Денис Борисович
  • Панов Дмитрий Михайлович
  • Бовина Мария Анатольевна
  • Беспалова Наталья Борисовна
  • Рудяк Константин Борисович
RU2635107C1
Способ получения депрессорно-диспергирующей присадки и депрессорно-диспергирующая присадка 2022
  • Несын Георгий Викторович
  • Суховей Максим Валерьевич
  • Хасбиуллин Ильназ Ильфарович
  • Максимовских Алексей Иванович
  • Чистяков Константин Андреевич
RU2793326C1
Способ получения депрессора и ингибитора асфальтосмолопарафиновых отложений АСПО, используемого в депрессорно-диспергирующих присадках к нефти 2022
  • Несын Георгий Викторович
  • Зверев Фёдор Сергеевич
  • Хасбиуллин Ильназ Ильфарович
  • Максимовских Алексей Иванович
  • Чистяков Константин Андреевич
RU2794111C1
Способ определения депрессорно-диспергирующих присадок в дизельном топливе 2021
  • Иванова Юлия Анатольевна
  • Темердашев Зауаль Ахлоович
  • Колычев Игорь Алексеевич
  • Киселева Наталия Владимировна
RU2756706C1
ДЕПРЕССОРНАЯ ПРИСАДКА КОМПЛЕКСНОГО ДЕЙСТВИЯ 2004
  • Прозорова И.В.
  • Бондалетов В.Г.
  • Копытов М.А.
  • Лоскутова Ю.В.
  • Приходько С.И.
  • Антонов И.Г.
  • Юдина Н.В.
RU2258079C1
ДИСПЕРГИРУЮЩАЯ ПРИСАДКА К ТОПЛИВУ И КОМПОЗИЦИЯ СРЕДНЕГО НЕФТЯНОГО ДИСТИЛЛЯТА ЕЕ СОДЕРЖАЩАЯ 2007
  • Андрюхова Нонна Петровна
  • Ермолаев Михаил Владимирович
  • Ковалев Владимир Абрамович
  • Финелонова Марина Викторовна
RU2330875C1
СПОСОБ И УСТАНОВКА ПОЛУЧЕНИЯ ДЕПРЕССОРНОЙ ПРИСАДКИ К ДИЗЕЛЬНОМУ ТОПЛИВУ, ДЕПРЕССОНАЯ ПРИСАДКА И ДИЗЕЛЬНОЕ ТОПЛИВО 2006
  • Саранди Евгений Константинович
  • Унковский Вячеслав Игоревич
  • Мусаев Кямран Муса Оглы
RU2337944C2

Реферат патента 2019 года Депрессорно-диспергирующая присадка к дизельному топливу, способ ее получения и способ получения депрессорного и диспергирующего компонентов депрессорно-диспергирующей присадки

Изобретение описывает депрессорно-диспергирующую присадку к дизельному топливу, которая содержит смесь депрессорного и диспергирующего компонентов, при этом в качестве депрессорного компонента применяется полимерное соединение, полученное реакцией радикальной сополимеризации малеинового ангидрида и фракции 1-олефинов С824 с участием инициатора радикальной полимеризации, с соотношением исходных реагентов от 1:0,92 до 1:3,7 при температуре 75-90°С в течение 8-23 ч в соответствующем растворителе, после которой упаривают растворитель и выделяют целевой продукт, а в качестве диспергирующего компонента - полимерное соединение, полученное реакцией метатезисной сополимеризации функционализированного норборнена и синтетического дивинилового каучука и 1-гексена или 1-октена в присутствии металлокомплексного диалкильного рутениевого катализатора общей формулы:

где заместители R3 и R4 выбраны из группы: R3=Me, Et, R4=Et, Bn, R3+R4=CH2CH2OCH2CH2, в соответствующем растворителе, при соотношении функционализированный норборнен : каучук от 1:15 до 1:1, соотношении катализатор : олефины в реакционной смеси от 1:350000 до 1:10000, при температуре 25-70°С в течение 8-23 ч, затем реакционную смесь гидрируют водородом при давлении 5-10 атм в присутствии палладия, далее фильтруют через окись алюминия и фильтрат упаривают, причем депрессорный и диспергирующий компоненты находятся в присадке в соотношении от 3:7 до 7:3 по объему. Также раскрывается способ получения указанной присадки. Технический результат - улучшение низкотемпературных характеристик дизельного топлива и седиментационной устойчивости при его холодном хранении и повышение выхода целевых продуктов до 95 масс %. 2 н. и 4 з.п. ф-лы, 1 табл., 30 пр.

Формула изобретения RU 2 684 412 C1

1. Депрессорно-диспергирующая присадка к дизельному топливу, содержащая смесь депрессорного и диспергирующего компонентов, отличающаяся тем, что она в качестве депрессорного компонента содержит полимерное соединение, полученное реакцией радикальной сополимеризации малеинового ангидрида и фракции 1-олефинов С824 с участием инициатора радикальной полимеризации, с соотношением исходных реагентов от 1:0,92 до 1:3,7 при температуре 75-90°С в течение 8-23 ч в соответствующем растворителе, после которой упаривают растворитель и выделяют целевой продукт, а в качестве диспергирующего компонента - полимерное соединение, полученное реакцией метатезисной сополимеризации функционализированного норборнена и синтетического дивинилового каучука и 1-гексена или 1-октена в присутствии металлокомплексного диалкильного рутениевого катализатора общей формулы:

где заместители R3 и R4 выбраны из группы: R3=Me, Et, R4=Et, Bn, R3+R4=CH2CH2OCH2CH2, в соответствующем растворителе, при соотношении функционализированный норборнен : каучук от 1:15 до 1:1, соотношении катализатор : олефины в реакционной смеси от 1:350000 до 1:10000, при температуре 25-70°С в течение 8-23 ч, затем реакционную смесь гидрируют водородом при давлении 5-10 атм в присутствии палладия, далее фильтруют через окись алюминия и фильтрат упаривают, причем депрессорный и диспергирующий компоненты находятся в присадке в соотношении от 3:7 до 7:3 по объему.

2. Депрессорно-диспергирующая присадка по п. 1, отличающаяся тем, что для депрессорного компонента соответствующий растворитель выбирают из бензола, толуола, ксилола, дихлорэтана, дихлорпропана или хлороформа.

3. Депрессорно-диспергирующая присадка по п. 1, отличающаяся тем, что инициатор радикальной полимеризации выбирают из дибензоилпероксида или азо-бис-изобутиронитрила.

4. Депрессорно-диспергирующая присадка по п. 1, отличающаяся тем, что используют функционализированный норборнен общей формулы: где заместители R1 и R2 выбраны из группы: R1=Н и Me, a R2=Me, Et, n-Pr, i-Pr, n-Bu, i-Bu.

5. Депрессорно-диспергирующая присадка по п. l, отличающаяся тем, что для диспергирующего компонента соответствующий растворитель выбирают из толуола или ксилола.

6. Способ получения депрессорно-диспергирующей присадки к дизельному топливу по п. 1, характеризующийся тем, что компоненты присадки отдельно растворяют в толуоле, полученные растворы объединяют и перемешивают в течение 30-50 мин, после чего толуол из полученной смеси удаляют.

Документы, цитированные в отчете о поиске Патент 2019 года RU2684412C1

КОМПОЗИЦИОННАЯ ДЕПРЕССОРНАЯ ПРИСАДКА К ДИЗЕЛЬНЫМ ТОПЛИВАМ 2004
  • Кемалов Алим Фейзрахманович
  • Ганиева Тамилла Фатхиевна
  • Плаксунов Тимур Касимович
  • Дияров Ирик Нурмухаметович
  • Фахрутдинов Рево Зиганшинович
  • Ибрагимов Наиль Габдулбариевич
  • Кемалов Руслан Алимович
  • Мухаматгалеев Радик Раифович
  • Бабынин Александр Александрович
  • Надыршин Раис Гумерович
  • Ахметова Альфия Нуруловна
  • Магдеева Самира Рашидовна
  • Каримов Ильсур Хашимович
RU2278150C1
RU 2005140538 A, 10.08.2006
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА ПОТОКА ТЕКУЧЕЙ СРЕДЫ 1995
  • Гудмундссон Йон Стейнар
RU2160888C2
US 5229022 A, 20.07.1993
US 6100224 A1, 08.08.2000
Устройство для формирования маркера 1988
  • Анищенко Владимир Викторович
  • Злотник Евгений Матвеевич
  • Райхлин Павел Моисеевич
  • Стежко Игорь Константинович
SU1541664A2
US 4235731 A1, 25.11.1980
Способ получения полиолефинсукцинимида 2016
  • Кузьменко Михаил Фёдорович
  • Шириязданов Ришат Рифкатович
  • Давлетшин Артур Раисович
  • Карчевский Станислав Геннадиевич
  • Теляшев Эльшад Гумерович
  • Тимербаев Рустам Тимурбекович
RU2612962C1
Способ получения высокомолекулярных ангидридов 1975
  • Носенко Николай Васильевич
  • Ястребова Алла Григорьевна
SU579283A1

RU 2 684 412 C1

Авторы

Полянский Кирилл Борисович

Земцов Денис Борисович

Афанасьев Владимир Владимирович

Верещагина Надежда Владимировна

Шелоумов Алексей Михайлович

Бовина Мария Анатольевна

Беспалова Наталья Борисовна

Рудяк Константин Борисович

Даты

2019-04-09Публикация

2017-11-02Подача