Изобретение относится к инструментальной промышленности, а именно к способу упрочнения поверхности путем лазерной обработки инструмента для накатывания резьбы, имеющего форму тела вращения, подвергающегося адгезионному и абразивному изнашиванию
Известен способ лазерной обработки режущих пластин и оксидно-карбидной керамики TiC+MgO+Al2O3 (Патент РФ на изобретение №2621245, заявленный 17.12.2015 года).
В известном способе поверхность режущей пластины подвергали импульсному лазерному воздействию, каждая пачка импульсов которого формирует пятно лазерного луча с определенной мощностью пучка на образце, с коэффициентом перекрытия пятна лазерного луча в диапазоне 0,1-0,9. Обработку проводят с частотой следования импульсов 90-110 кГц, числом импульсов в пачке более 60 и мощности пучка на образце 7-8 Вт. Причем, коэффициент перекрытия лазерного пятна составляет 0,5-0,75.
Однако, данный способ применяется для повышения стойкости режущего инструмента, изготовленного из оксидно-карбидной керамики и неприемлем для обработки деталей из сталей.
Наиболее близким по технической сущности к предлагаемому изобретению является способ лазерной обработки деталей вращения (патент РФ на изобретение № 2058401, заявленный 13.07.1993 года).
Данный способ относится к области термической обработки стали с помощью лазерного луча при изготовлении деталей типа тел вращения, работающих в условиях трения со смазкой.
Сущность способа заключается в том, что в процессе обработки деталь вращают и смещают в осевом направлении, нагревают поверхность лучом лазера непрерывного действия с плотностью мощности 130-150- ВТ/ мм2, диаметром расфокусировки 0,8-1,0 мм. Со степенью перекрытия зон нагрева 10-15% , прилинейной скорости обработки 45-55 мм/с.
Изобретение направлено на решение задачи повышения износостойкости конструкционных сталей за счет формирования маслоподающего рельефа в зоне нагрева (непрерывного обновления масла) при эксплуатации деталей, изготовленных этим способом.
При этом, технический результат, который может быть получен при осуществлении изобретения, заключается в возможности снижения температуры в очаге трения и выноса продуктов трения из зоны эксплуатации.
Однако, технические результаты выше приведенного способа касаются производства деталей типа тел вращения, изготовленных из конструкционных сталей, поэтому параметры лазерной обработки, приведенные в формуле данного изобретения, не могут обеспечить необходимые свойства износостойкости эксплуатационных характеристик деталей тел вращения, изготовленных из инструментальных сталей, так как конструкционные стали более теплопроводны и требуют меньшего времени нагрева по сравнению с инструментальными.
Технической проблемой предлагаемого изобретения является повышение износостойкости деталей, типа тел вращения, изготовленных из инструментальных сталей с применением их лазерной обработки, работающих в условиях повышенных контактных нагрузках.
Технический результат достигается тем, что в способе лазерной обработки деталей, в частности, тел вращения из инструментальной стали, включающем вращение и осевое перемещение детали с последующей обработкой поверхности детали лучом лазера непрерывного действия со степенью перекрытия лазерных дорожек 10-15%, но обработку деталей проводят с плотностью мощности лазерного луча, равной 80-90Вт/мм2, диаметром пятна луча 3 мм, при линейной скорости обработки 6 мм/с.
Новым в предлагаемом изобретении является то, что, обработку деталей проводят с плотностью мощности лазерного луча, равной 80-90Вт/мм2, диаметром пятна луча 3 мм, при линейной скорости обработки 6 мм/с.
Основными параметрами лазерной обработки непрерывным лазером являются мощность излучения и диаметр пятна, которые определяют плотность мощности. Кроме того, к ним относят скорость перемещения детали относительно луча, от которой зависит длительность лазерного воздействия.
При обработке поверхности деталей непрерывным лазером используют последовательное наложение полос обработки плоских поверхностей и обработки цилиндрических поверхностей. В этом случае важной характеристикой является коэффициент перекрытия.
Способ осуществляли следующим образом. Деталь, имеющую форму тела вращения закрепляли в манипуляторе и сообщали ей вращательно- поступательное движение. На лазере непрерывного действия устанавливали режим генерации лазерного луча с плотностью мощности от 40 Вт/мм2 до 130 Вт/мм2, с диаметром пятна лазерного луча 3 мм. Скорость обработки изделия варьировалась от 6 мм/с - 12мм/с. При этом, степень перекрытия лазерных дорожек на изделии составляла 10-15%.
Оптимальные режимы способа определялись в процессе эксперимента при обработке роликов для накатывания резьбы, изготовленных из инструментальной стали Р6М5, на непрерывном СО2- лазере-комплексе «Латус-31».
Измерение микротвердости образцов проводилось на микротвердомере ПТМ-3. Исследование микроструктуры проводилось с помощью оптического микроскопа.
Данные проведенных испытаний приведены в таблице. 1
Таблица 1
Вывод из таблицы:
Для инструментальных сталей лазерную закалку следует проводить в узком интервале режимов обработки, обеспечивающих образование более мелкого мартенсита с достаточным количеством углерода, когда растворение карбидов находится на начальной стадии, и как следствие - получение высокой микротвердости. Рассмотренные условия могут быть обеспечены при лазерной обработке без оплавления либо с минимальным оплавлением поверхности.
При снижении скорости перемещения лазерного луча наблюдается увеличение глубины упрочненного слоя.
Коэффициент перекрытия лазерных дорожек 10-15% обеспечивает оптимальную площадь обрабатываемой поверхности.
Из таблицы видно из таблицы.1, что при режиме № 4 наблюдается максимальная микротвердость и наибольшая глубина упрочненного слоя, а наименьшие при режимах № 11 и 12.
Наилучший результат по показателям микротвердости при лазерной обработке для стали Р6М5 выбран следующим:
- мощность излучения - Р=80-90 Вт/мм2;
- скорость обработки - V=6 мм/с;
- диаметр пятна - dп=3 мм;
- степень перекрытия лазерных дорожек 10-15%
На основании полученных данных, по микротвердости и микроструктуре, поверхностных слоев, обработанных лазерным излучением накатных роликов, вышеуказанные параметры лазерной закалки были выбраны, как оптимальные для поверхностного упрочнения.
В связи с этим, была проведена оценка влияния этих параметров излучения, а также химического состава обрабатываемых сталей на распределение микротвердости, изменение структуры в зоне термического влияния, и на этой основе определить область значений мощности, диаметра пятна излучения, скорости перемещения изделия, при которых наблюдается гарантированное упрочнение.
После лазерной обработки проводились металлографические исследования на шлифах, которые изготавливались на образцах с последующим травлением для выявления зонального строения микроструктуры. Измерение микротвердости проводилось на микротвердомере ПМТ3, фотографирование и оценка микроструктуры проводилось на оптическом микроскопе МИМ-7 и KEYENCE VHX-1000.
Также, были проведены исследования структуры на сканирующем электронном микроскопе VEGA TS5130 в режиме энерго-дисперсионного анализа при ускоряющем напряжении 20 кВ (фиг. 1,2).
После проведения лазерной обработки на поверхности стали Р6М5 образуется упрочненная зона. Глубже упрочненного слоя формируется переходная зона и далее расположен основной металл.
Исследования микроструктуры и микротвердости стали Р6М5 в отпущенном состоянии дали следующие результаты: структура зоны упрочнения представляет собой мартенсит и карбиды, то есть практически такую же, как и после обычной объемной закалки. Однако после лазерной обработки дисперсность мартенсита выше, чем после объемной термической обработки. От основного металла, зону упрочнения отделяет узкая переходная зона. Повышенная травимость переходной зоны обусловлена диффузионным концентрационным расслоением микроструктуры, с повышением карбидообразующих элементов в приграничных областях зерен.
Повышение микротвердости упрочненного слоя, по сравнению с основой, объясняется тем, что дисперсность мартенсита выше; в следствии обработки лазером повышаются микронапряжения.
В качестве демонстрации возможности применения предлагаемой лазерной обработки для повышения эксплуатационных характеристик и ресурса промышленных изделий производили обработку опытных партий роликов для накатывания резьбы из стали Р6М5 по режиму лазерной обработки, указанному выше, степень перекрытия лазерных дорожек составляла 10-15% (фиг. 3).
В ходе исследований сравнивалась стойкость роликов после обычной термической обработки и после лазерной обработки по заявленному режиму. В качестве критерия, определяющего ресурс работы инструмента, использовали максимально возможное число кондиционных изготовленных серийных деталей, до выхода из строя ролика.
На первом этапе исследовалась зависимость стойкости роликов от диметра резьбы накатываемых болтов (шифр изделия ОСТ1 31504-80). Данные приведены в таблице 2.
Также, были проведены исследования зависимости стойкости крепежных изделий от вида материалов, из которого были изготовлены изделия. Исходный материал имел следующие прочностные характеристики: титановый сплав ВТ16 с пределом прочности σв=810-930 МПа, титановый сплав ВТ1-00 с пределом прочности σв=290-480 МПа, сталь 14Х17Н2 с пределом прочности σв=720-740 МПа. Данные приведены в таблице 3.
Таблица 2
Таблица 3
На третьем этапе производилось исследование зависимости стойкости роликов накатывании резьбы на болты от степени конечной деформации металла при изготовлении болтов из стали 20Г2Р с пределом прочности 550-600 МПа. Данные приведены в таблице 4.
Из приведенных данных таблиц 2-4 следует, что использование предлагаемого способа лазерной обработки позволяет, по сравнению с обычной объемной термообработкой, повысить износостойкость накатных роликов до 28%.
Таблица 4
Предлагаемый способ лазерной обработки обеспечивает повышение стойкость инструментальных сталей, подвергающихся при эксплуатации повышенному износу и позволяет расширить номенклатуру упрочняемых лазером деталей в сторону увеличения габаритов их рабочих частей.
название | год | авторы | номер документа |
---|---|---|---|
Способ упрочнения деревообрабатывающего инструмента, изготовленного из хромистых и хромо-кремнистых сталей | 2022 |
|
RU2792101C1 |
Способ формирования упрочненного приповерхностного слоя в зоне лазерной резки деталей | 2018 |
|
RU2695715C1 |
Способ повышения чистоты поверхности обрабатываемых металлических изделий | 2019 |
|
RU2740584C1 |
СПОСОБ ПОВЫШЕНИЯ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ИНСТРУМЕНТАЛЬНЫХ И КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ МЕТОДОМ ОБЪЕМНОГО ИМПУЛЬСНОГО ЛАЗЕРНОГО УПРОЧНЕНИЯ (ОИЛУ) | 2013 |
|
RU2517632C1 |
СПОСОБ ЛАЗЕРНОГО ЛЕГИРОВАНИЯ ИНСТРУМЕНТАЛЬНОЙ СТАЛИ ПОРОШКАМИ КАРБИДА БОРА И АЛЮМИНИЯ | 2022 |
|
RU2786263C1 |
Способ получения многослойной модифицированной поверхности титана | 2017 |
|
RU2686973C1 |
СПОСОБ ЛАЗЕРНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ РАБОЧЕЙ ПОВЕРХНОСТИ ЗУБЬЕВ ШЕСТЕРНИ | 2011 |
|
RU2482194C2 |
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ | 2011 |
|
RU2482218C1 |
Способ роботизированного лазерного упрочнения изделий из штамповой стали | 2023 |
|
RU2820138C1 |
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ | 2011 |
|
RU2470091C1 |
Изобретение относится к инструментальной промышленности, а именно к способу лазерной обработки детали вращения из инструментальной стали. Осуществляют вращение и осевое перемещение детали с обработкой ее поверхности лучом лазера непрерывного действия со степенью перекрытия лазерных дорожек 10-15%. Обработку детали лазерным лучом проводят с плотностью мощности лазерного луча, равной 80-90 Вт/мм2, диаметром пятна лазерного луча 3 мм и при линейной скорости перемещения лазерного луча 6 мм/с. Обеспечивается повышение износостойкости упомянутой детали вращения в условиях повышенных контактных нагрузок, а также расширяется номенклатура упрочняемых лазером деталей, имеющих увеличенные габариты рабочих частей. 4 табл., 3 ил.
Способ лазерной обработки детали вращения из инструментальной стали, включающий вращение и осевое перемещение детали с обработкой поверхности детали лучом лазера непрерывного действия со степенью перекрытия лазерных дорожек 10-15%, отличающийся тем, что обработку детали лазерным лучом проводят с плотностью мощности лазерного луча, равной 80-90 Вт/мм2, диаметром пятна лазерного луча 3 мм и при линейной скорости перемещения лазерного луча 6 мм/с.
RU 2058401 C1, 20.04.1996 | |||
СПОСОБ И СИСТЕМА ДЛЯ ЛАЗЕРНОГО УПРОЧНЕНИЯ ПОВЕРХНОСТИ ОБРАБАТЫВАЕМОЙ ДЕТАЛИ | 2015 |
|
RU2682189C2 |
Способ термической обработки деталей | 1989 |
|
SU1617007A1 |
СПОСОБ И СИСТЕМА ДЛЯ ЛАЗЕРНОГО УПРОЧНЕНИЯ ПОВЕРХНОСТИ ОБРАБАТЫВАЕМОЙ ДЕТАЛИ | 2013 |
|
RU2661131C2 |
CN 100443597 C, 17.12.2008 | |||
JP 63278726 A, 16.11.1988. |
Авторы
Даты
2020-10-23—Публикация
2020-06-22—Подача