СПОСОБ ВОССТАНОВЛЕНИЯ ЗАКАЛЕННЫХ ГИЛЬЗ ЦИЛИНДРОВ Российский патент 2002 года по МПК B23P6/00 C21D1/78 C21D9/06 

Описание патента на изобретение RU2181649C2

Изобретение относится к области машиностроения и ремонту машин, в частности к восстановлению изношенных внутренних цилиндрических поверхностей.

Известен способ восстановления гильз цилиндров путем получения покрытий из порошков на внутренней поверхности изделий. На внутреннюю поверхность вращающейся гильзы равномерно насыпается металлический порошок, а внутрь гильзы вводят источник нагрева. При нагреве поверхности гильзы осуществляется напекание порошка (a.c. 1289608, B 22 F 7/04, опубл. в БИ 6, 1987).

Полученные покрытия имеют высокую твердость, плохо поддаются механической обработке, а в эксплуатационных условиях, сопряженные с поршневыми кольцами, вызывают их интенсивный износ.

Также известен способ восстановления гильз цилиндров двигателей внутреннего сгорания, при котором осуществляют термопластическое деформирование, растачивание и хонингование под номинальный или ремонтный размер, а затем нанесение покрытия на внутреннюю поверхность одновременно с обкатыванием (а. с. 1505738, B 22 F 6/00, опубл. в БИ 33, 1989).

Однако данный способ не позволяет получить восстановленные гильзы с высоким послеремонтным ресурсом без дополнительной упрочняющей обработки зеркала гильзы поверхностно-пластической деформацией с одновременным нанесением антифрикционного покрытия.

Также известен способ восстановления гильз цилиндров двигателей внутреннего сгорания, включающий создание непрерывно-последовательного вдоль оси детали градиента температуры посредством нагрева токами высокой частоты (ТВЧ) окружной, локальной зоны стенки гильзы и охлаждение ее струями воды в процессе перемещения детали относительно источников нагрева и охлаждения (а. с. 969495, В 23 Р 6/00, опубл. в БИ 40, 1982 ).

Однако данный способ не позволяет получить материал с высокими физико-механическими свойствами пластичности и вязкости, что приводит к трещинообразованию металла.

Наиболее близок к предлагаемому по технической сущности и достигаемому результату способ восстановления изношенной внутренней цилиндрической поверхности преимущественно стальных и чугунных деталей типа гильз цилиндров двигателей внутреннего сгорания, заключающийся в том, что изношенную гильзу устанавливают в охлаждаемую обойму и с помощью индуктора нагревают током высокой частоты. Вследствие ограничения свободного расширения в ней нарастают температурные напряжения. При достижении определенной их величины в радиальном направлении начинают развиваться пластические деформации, которые увеличиваются с повышением температуры. При свободном остывании размеры гильзы уменьшаются как в осевом, так и в радиальном направлениях. Величина уменьшения диаметра зависит от толщины стенки, материала, температуры, скорости нагрева и других факторов. Так, у гильз цилиндров двигателя СМД-14 величина усадки при оптимальных значениях температуры и скорости нагрева составляет 0,75-0,90 мм (а.с. СССР 753582. Способ восстановления полых цилиндрических деталей /Бовбас В.И., Воловик Е.Л., Костюков Ю.Л., Федингин А.И, опубл. БИ 29, 1980).

Однако известный способ пригоден для гильз цилиндров, изготовленных из специальных легированных чугунов, которые не требуют термической обработки, и не позволяет восстанавливать гильзы цилиндров без последующей упрочняющей или антифрикционной обработки гильзы с закаленной внутренней цилиндрической поверхностью, изготовленные из марок серого чугуна.

Задачей изобретения является повышение качества восстановления гильзы цилиндра, изготовленной из серого чугуна, за счет снижения напряженно-деформированного состояния в процессе осаживания внутреннего диаметра гильзы и увеличения долговечности восстановленных гильз цилиндров за счет закалки внутренней цилиндрической поверхности на мартенсит (троостит).

Указанная задача достигается тем, что в способе восстановления закаленных гильз цилиндров, включающем установку гильзы в охлаждаемую матрицу, объемный нагрев гильзы и охлаждение, согласно изобретению объемный нагрев гильзы ведут до 500-600oС, затем осуществляют предварительный поверхностный нагрев внутренней стенки гильзы до температуры Ac1-(10-30)oС при сохранении градиента температуры между стенкой гильзы и внутренней цилиндрической поверхностью охлаждаемой матрицы и проводят поверхностный нагрев внутренней стенки гильзы до температуры закалки Ac1+(30-50)oС с одновременным спрейерным охлаждением жидкостью на мартенсит, троостит.

Причем предварительный поверхностный нагрев внутренней стенки гильзы до температуры Ас1-(10-30)oС ведут с помощью индуктора за один проход вдоль оси гильзы цилиндра со скоростью 2-2,5 мм/с.

Причем нагрев до температуры закалки Ас1+(30-50)oС и спрейерное охлаждение внутренней поверхности стенки гильзы ведут с помощью индуктора и спрейера за один проход вдоль оси гильзы цилиндра с одинаковой скоростью 6-8 мм/с.

Термоупругопластическое деформирование (осаживание) гильзы цилиндра осуществляют при нагреве стенки гильзы до температуры Ас1-(10-30)oС, то есть в интервале температуры субкритической сверхпластичности (см. кн. Гуляев А.П. Металловедение. Учебник для вузов. - М.: Металлургия, 1986. - 544 с., c. 63-64).

При нагреве ниже температуры Ас1-30oС в металле еще не начинаются процессы нарушения связей атомов кубической объемноцентрированной решетки α-железа, которые значительно (иногда на порядок) снижают модуль упругости и предел текучести металла.

При нагреве выше температуры Ас1-10oС в металле уже начинаются процессы фазовых превращений, перехода α-железа в γ-железа, то есть перестройки кубической объемноцентрованной решетки железа в кубическую гранецентрированную, что значительно снижает пластические свойства металла.

Закалку гильзы цилиндра осуществляют при поверхностном нагреве внутренней стенки гильзы до температуры Ас1+(30-50)oС со спрейерным охлаждением жидкостью на мартенсит, троостит.

При нагреве ниже температуры Ас1+30oС в металле весь перлит еще не успевает перейти в аустенит, что при последующем охлаждении не вызывает достаточного количества структур мартенсита или троостита.

При нагреве выше температуры Ас1+50oС в металле происходит растворение цементита, что снижает твердость и увеличивает количество остаточного аустенита после охлаждения на мартенсит. При этом растет зерно аустенита, увеличивается возможность возникновения больших закалочных напряжений, интенсивнее обезуглероживается поверхность металла, что в конечном итоге приводит к получению крупноигольчатой структуре мартенсита.

Способ осуществляется следующим образом.

Изношенную гильзу цилиндра, изготовленную из серого чугуна, автотракторного дизеля ЯМЗ-236 с внутренним диаметром 130 мм, толщиной стенки 9 мм, высотой 287 мм, устанавливают в охлаждаемую матрицу на стол устройства вращения и перемещения. Затем со скоростью 3-5 мм/с гильза перемещается относительно индуктора вверх и вниз с постепенным объемным нагревом через теплопроводность внутренней поверхности до температуры 500-600oС. Нагрев осуществляют за два прохода индуктора вдоль оси гильзы со скоростью 3-5 мм/с. Постепенный предварительный нагрев восстанавливаемой гильзы за два прохода позволит значительно снизить напряженное состояние малопластичного серого чугуна. Затем нагревают внутреннюю поверхность гильзы до температуры Ас1-(10-30)oС при сохранении градиента температуры между стенкой гильзы и внутренней цилиндрической поверхностью охлаждаемой матрицы. Нагрев гильзы до температуры Ас1-(10-30)oС осуществляют за один проход индуктора вдоль оси гильзы со скоростью 2-2,5 мм/с. В завершении осуществляют закалку при поверхностном нагреве внутренней стенки гильзы до температуры Ас1+(30-50)oС со спрейерным охлаждением жидкостью на мартенсит, троостит. Нагрев осуществляют за один проход индуктора и спрейера вдоль оси гильзы с одинаковой скоростью 6-8 мм/с.

При этом величина радиальной деформации составляет 1,0-1,2 мм на диаметр.

Пример конкретного выполнения способа.

Чугунную гильзу цилиндра, изготовленную из серого перлитного чугуна, автотракторного дизеля ЯМЗ-236 с внутренним диаметром 130 мм, толщиной стенки 9 мм, высотой 287 мм, устанавливают в охлаждаемую матрицу на стол устройства вращения и перемещения. Затем со скоростью 3-5 мм/с гильза перемещается относительно индуктора вверх и вниз с постепенным объемным нагревом через теплопроводность внутренней поверхности до температуры 500-600oС. Мощность установки ТВЧ 100 кВт с использованием лампового генератора частотой 66 кГц. Нагрев осуществляют за два прохода индуктора вдоль оси гильзы со скоростью 3-5 мм/с. Постепенный предварительный нагрев восстанавливаемой гильзы за два прохода позволяет значительно снизить напряженное состояние малопластичного в холодном состоянии серого чугуна. Затем нагревают внутреннюю поверхность гильзы до температуры 730-760oС при сохранении градиента температуры между стенкой гильзы и внутренней цилиндрической поверхностью охлаждаемой матрицы. Нагрев гильзы до температуры 730-760oС осуществляют за один проход индуктора вдоль оси гильзы со скоростью 2-2,5 мм/с. В завершение осуществляют закалку при поверхностном нагреве внутренней стенки гильзы до температуры 800-820oС с одновременным спрейерным охлаждением водой с температурой 18-30oС нагретой внутренней поверхности гильзы на мартенсит, троостит. Нагрев осуществляют за один проход индуктора и спрейера вдоль оси гильзы с одинаковой скоростью 6-8 мм/с. При этом величина радиальной деформации гильзы цилиндра (осадка) составляет 1,0-1,2 мм на диаметр.

После окончания указанной последовательности операций технологического процесса восстановления закаленной гильзы цилиндра методом термоупругопластического деформирования и поверхностной закалки и зеркала чугунной гильзы получают необходимые величину обжатия и высокие физико-механические свойства металла, соответствующие гильзам цилиндров мокрых для тракторных и комбайновых дизелей ГОСТ 24681-81. Микроструктура гильзы цилиндра представляет собой безыгольчатый мартенсит, включения графита и фосфидной эвтектики (закаленный слой) и зернистый перлит (сердцевина), что соответствует требованиям ГОСТ 3443-77, см. таблицу.

По результатам таблицы видно, что наиболее оптимальными режимами нагрева и закалки ТВЧ гильз цилиндров с точки зрения получения необходимых величин обжатия (величина остаточной упругопластической деформации) и улучшения механических свойств являются заявляемые режимы 1 и 2.

Использование предлагаемого способа по сравнению с прототипом позволяет восстанавливать закаленные гильзы цилиндров автотракторных дизелей, изготовленные из серого чугуна. А совокупность применяемых приемов в технологическом процессе дает качественно новые свойства восстановленных гильз цилиндров, что значительно повышает их долговечность после ремонта.

Похожие патенты RU2181649C2

название год авторы номер документа
СПОСОБ ВОССТАНОВЛЕНИЯ ЧУГУННЫХ ГИЛЬЗ ЦИЛИНДРОВ ДВИГАТЕЛЕЙ 2000
  • Хромов В.Н.
RU2181650C2
СПОСОБ ВОССТАНОВЛЕНИЯ ШЛИЦЕВЫХ ВТУЛОК 2001
  • Хромов В.Н.
RU2198776C2
СПОСОБ ВОССТАНОВЛЕНИЯ ВТУЛОК 2001
  • Хромов В.Н.
  • Родичев А.Ю.
RU2198953C2
СПОСОБ ВОССТАНОВЛЕНИЯ ВНУТРЕННИХ И НАРУЖНЫХ ЦИЛИНДРИЧЕСКИХ ПОВЕРХНОСТЕЙ ЧУГУННЫХ ГИЛЬЗ ЦИЛИНДРОВ 2000
  • Хромов В.Н.
  • Бочаров В.С.
RU2174901C1
УСТАНОВКА ДЛЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПОЛЫХ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ 2000
  • Ширяев А.А.
  • Костюков А.Ю.
  • Хромов В.Н.
  • Лялякин В.П.
RU2182932C2
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КАТКОВ ГУСЕНИЧНЫХ МАШИН 2003
  • Ревин В.Н.
  • Ярыгин В.П.
RU2240359C1
СПОСОБ ЗАКАЛКИ ПРОФИЛЬНОЙ ЛЕНТЫ ДЛЯ ПОРШНЕВЫХ КОЛЕЦ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Выдревич Л.А.
  • Меликян Г.А.
  • Капустенко А.Ф.
  • Соломаха К.М.
RU2147041C1
СПОСОБ ВОССТАНОВЛЕНИЯ ГИЛЬЗ ЦИЛИНДРОВ АВТОТРАКТОРНЫХ ДИЗЕЛЕЙ ИЗ ЧУГУНА 1998
  • Хромов В.Н.
RU2151678C1
Способ индукционного термического упрочнения остряков стрелочных переводов и установка для его осуществления 2022
RU2794329C1
ИНДУКЦИОННОЕ УСТРОЙСТВО ДЛЯ ТЕРМООБРАБОТКИ ИЗДЕЛИЙ С ИХ ВРАЩЕНИЕМ 2010
  • Баранов Владимир Степанович
  • Лашкевич Олег Евгеньевич
  • Тарарук Аркадий Иванович
  • Бакка Дмитрий Сергеевич
RU2464323C2

Иллюстрации к изобретению RU 2 181 649 C2

Реферат патента 2002 года СПОСОБ ВОССТАНОВЛЕНИЯ ЗАКАЛЕННЫХ ГИЛЬЗ ЦИЛИНДРОВ

Изобретение относится к области машиностроения и ремонту машин, в частности к восстановлению изношенных внутренних цилиндрических поверхностей. Задачей изобретения является повышение качества восстановления гильзы цилиндра, изготовленной из серого чугуна, за счет снижения напряженно-деформированного состояния в процессе осаживания внутреннего диаметра гильзы и увеличения долговечности восстановленных гильз цилиндров за счет закалки внутренней стенки гильзы на мартенсит, троостит. Указанная задача достигается тем, что в способе восстановления закаленных гильз цилиндров, включающем установку гильзы в охлаждаемую матрицу, объемный нагрев гильзы и охлаждение, согласно изобретению объемный нагрев гильзы ведут до 500-600oС, затем осуществляют предварительный поверхностный нагрев внутренней стенки гильзы до температуры Ас1-(10-30)oС при сохранении градиента температуры между стенкой гильзы и внутренней цилиндрической поверхностью охлаждаемой матрицы и проводят закалку при поверхностном нагреве внутренней стенки гильзы до температуры закалки Ас1+(30-50)oС с одновременным спрейерным охлаждением жидкостью на мартенсит, троостит. При этом предварительный поверхностный нагрев внутренней стенки гильзы до температуры Ас1 - (10-30)oС ведут с помощью индуктора за один проход вдоль оси гильзы цилиндра со скоростью 2-2,5 мм/с, а нагрев до температуры закалки Ас1+(30-50)oС и спрейерное охлаждение внутренней поверхности стенки гильзы ведут с помощью индуктора и спрейера за один проход вдоль оси с одинаковой скоростью 6-8 мм/с. Использование предлагаемого способа позволяет восстанавливать закаленные гильзы цилиндров автотракторных дизелей, изготовленные из серого чугуна. А совокупность применяемых приемов в технологическом процессе дает качественно новые свойства восстановленных гильз цилиндров, что значительно повышает их долговечность после ремонта. 2 з.п.ф-лы, 1 табл.

Формула изобретения RU 2 181 649 C2

1. Способ восстановления закаленных гильз цилиндров, включающий установку гильзы в охлаждаемую матрицу, объемный нагрев гильзы и охлаждение, отличающийся тем, что объемный нагрев гильзы ведут до 500-600oС, затем осуществляют предварительный поверхностный нагрев внутренней стенки гильзы до температуры Ас1-(10-30)oС при сохранении градиента температуры между стенкой гильзы и внутренней цилиндрической поверхностью охлаждаемой матрицы и проводят закалку при поверхностном нагреве внутренней стенки гильзы до температуры закалки Ас1+(30-50)oС с одновременным спрейерным охлаждением жидкостью на мартенсит, троостит. 2. Способ по п. 1, отличающийся тем, что предварительный поверхностный нагрев внутренней стенки гильзы до температуры Ас1 - (10-30)oС ведут с помощью индуктора за один проход вдоль оси гильзы цилиндра со скоростью 2-2,5 мм/с. 3. Способ по п. 1, отличающийся тем, что нагрев до температуры закалки Ас1+(30-50)oС и спрейерное охлаждение внутренней поверхности стенки гильзы ведут с помощью индуктора и спрейера за один проход вдоль оси гильзы цилиндра с одинаковой скоростью 6-8 мм/с.

Документы, цитированные в отчете о поиске Патент 2002 года RU2181649C2

Способ восстановления полых цилиндрических деталей 1978
  • Бовбас Владимир Иванович
  • Воловик Евгений Львович
  • Костюков Юрий Лаврентьевич
  • Федингин Андрей Иванович
SU753582A1
Способ восстановления внутренних поверхностей цилиндрических стальных деталей 1985
  • Гурмаза Александр Андреевич
  • Семененко Александр Иванович
  • Сияница Леонид Николаевич
  • Резников Владимир Анатольевич
  • Ткаченко Олег Петрович
  • Целыковский Константин Владимирович
SU1341223A1
СПОСОБ ВОССТАНОВЛЕНИЯ ЦИЛИНДРИЧЕСКИХ ПОВЕРХНОСТЕЙ БОЛЬШОЙ КРИВИЗНЫ КОРПУСНЫХ СТАЛЬНЫХ ДЕТАЛЕЙ 1991
  • Гурмаза Александр Андреевич[Ua]
  • Бугаев Вячеслав Николаевич[Ru]
  • Семененко Александр Иванович[Ua]
  • Матвиенко Олег Иванович[Ua]
  • Удод Сергей Иванович[Ua]
  • Бабот Марат Натанович[Lt]
  • Половинкин Валерий Николаевич[Ru]
  • Лянной Валентин Борисович[Ru]
  • Загородских Павел Иванович[Ru]
RU2026370C1
Способ восстановления внутренних цилиндрических поверхностей чугунных деталей 1987
  • Гурмаза Александр Андреевич
  • Семененко Александр Иванович
  • Матвиенко Олег Иванович
  • Савченко Владимир Иванович
  • Удод Сергей Иванович
  • Зайцев Демосфен Кузьмич
  • Клименко Юрий Иванович
  • Часноков Виталий Николаевич
SU1468932A1
SU 1592356 А1, 15.09.1990
Способ восстановления поверхностей отверстий корпусных деталей из углеродистых сталей 1986
  • Семененко Александр Иванович
  • Гурмаза Александр Андреевич
  • Сияница Леонид Николаевич
  • Савченко Владимир Иванович
  • Коваленко Василий Федорович
  • Тюрин Владимир Иванович
  • Сонин Павел Мордукович
  • Ткаченко Олег Петрович
  • Резников Владимир Анатольевич
SU1330178A1

RU 2 181 649 C2

Авторы

Хромов В.Н.

Лялякин В.П.

Ширяев А.А.

Костюков А.Ю.

Даты

2002-04-27Публикация

2000-02-08Подача