СПОСОБ НАНЕСЕНИЯ ВАКУУМНЫХ ПОКРЫТИЙ В ОТВЕРСТИЯХ Российский патент 2003 года по МПК C23C14/30 

Описание патента на изобретение RU2211258C2

Изобретение относится к области нанесения покрытий в вакууме, а точнее к нанесению покрытий способом электронно-лучевого нагрева испаряемого материала с одновременным его осаждением на внутренних поверхностях деталей сложной формы.

Изобретение наиболее эффективно может быть использовано для нанесения покрытий на внутренние поверхности отверстий металлических деталей, предназначенных для пайки со стеклом или керамикой или керамических деталей, паяемых в отверстиях с металлическими или композитными материалами.

Данный способ может также использоваться для металлизации отверстий в деталях из диэлектрических материалов.

Известно устройство и принцип испарения электронным лучом в вакууме с использованием водоохлаждаемого тигля (З. Шиллер и др. Электронно-лучевая технология, М. , "Энергия" 1980, с.171-172). Недостатками данного технического решения являются низкий коэффициент полезного действия процесса, длительное время предварительного разогрева и низкая скорость осаждения паров на поверхностях деталей сложной формы, их загрязнение материалом тигля, а также наличие условий быстрого радиационного перегрева напыляемых деталей от массивного расплавленного слитка в тигле.

Известно также техническое решение "Электронно-лучевой испарительный модуль", описанное в информационном листке ВИМИ 83-0002. В данном способе испарение металла осуществляется из жидкой ванны с торца стержня, заключенного в водоохлаждаемую цангу с отклонением луча на 90o. Недостатком способа в решении задачи напыления отверстий является необходимость в применении сложных водоохлаждаемых испарителей. Кроме того, рекомендуемая авторами величина дистанции напыления 0,06...0,065 м не обеспечит высокого КПД использования испаряемого материала и электроэнергии для напыления отверстий.

Известен способ бестигельного испарения металла из жидкой ванны расплава на поверхности массивного слитка, описанный в З. Шиллер и др. "Электронно-лучевая технология", М. , "Энергия" 1980, с.186-187. Этот способ испарения металла состоит в том, что массивный блок испаряемого металла нагревается сфокусированным электронным пучком в точке с отклонением луча на 90o. Напыляемая поверхность находится над испарителем и отклоняющей системой.

Недостаток известного способа бестигельного вакуумного испарения из жидкой ванны на поверхности массивного слитка заключается в том, что такие элементы деталей, как отверстия покрываются медленно и неравномерно, при этом обязательно применение механизмов перемещения детали по нескольким координатам. При этом коэффициент использования испаряемого материала остается низким из-за удаленности напыляемых поверхностей от источника пара, это же является и причиной того, что полученные покрытия имеют низкую адгезию.

Из известных методов вакуумного испарения наиболее близким по технической сущности является способ выполнения отверстий с их одновременной металлизацией методом лучевого нагрева, описанный в А.С. 213517.

Недостатком данного способа является малая толщина получаемого покрытия, его низкая адгезия и качество нанесенного слоя. Применение прозрачного материала в качестве верхней пластины, препятствующей удалению паров, может быть рассчитано на использование только одного импульса излучения, так как при этом происходит запыление стекла и при следующем импульсе пластина разрушается. Кроме того, электронный луч не может проникать через стекло, как и любой другой материал, без его разрушения к испарителю. Известный способ рассчитан на металлизацию микроотверстий и не может быть использован для прецизионных отверстий с высокой чистотой обработки. Это следует из того, что металлизация отверстий совмещена с их прошивкой, а как известно, при высокой концентрации мощности в луче, необходимой для прошивки, происходит каплевидный перенос металла, что неприемлемо для поверхностей с высоким классом чистоты. Данный процесс металлизации не предназначен для получения прочных покрытий с высокой адгезией, так как использование моноимпульсного нагрева не прогревает напыляемую подложку.

Целью настоящего изобретения является достижение одинаковой толщины напыленного слоя во всех покрываемых отверстиях, повышение адгезии покрытия его качества, увеличение производительности процесса и снижение производственных затрат.

Поставленная цель достигается тем, что электронный пучок направляется перпендикулярно к поверхности массивного испарителя, расположенного горизонтально, непосредственно через покрываемые отверстия.

Детали с покрываемыми отверстиями располагаются на поверхности испарителя, обращенной к электронно-лучевой пушке. Оси отверстий ориентируются перпендикулярно этой поверхности. Отверстия закрываются с двух сторон масками. Маска, прилегающая к испарителю, имеет соосные отверстия, которые обеспечивают поступление паров на покрываемые поверхности. Изменением толщины этой маски и соотношения размеров отверстий в этой маске и детали регулируется распределение толщины покрытия по высоте напыляемого отверстия. Маска, закрывающая деталь со стороны электронного пучка, имеет двойное назначение. Во-первых, она выполняет функцию диафрагмы и ограничивает выход паров наружу из напыляемого объема. Для этого отверстия в ней сделаны минимально необходимыми для прохода через них сфокусированного электронного пучка. Во-вторых, перед напылением детали прогреваются посредством подогрева лучом верхней маски. При этом нижняя маска, обращенная к детали, выполняет функцию теплового барьера, предотвращая отвод тепла в массивный испаритель. Тем самым поддерживается оптимальная рабочая температура детали, необходимая для высокой адгезии покрытия.

Для получения покрытия одинаковой толщины во всех покрываемых отверстиях электронный пучок разделяется в соответствии с их количеством равномерно по мощности и наводится через отверстия верхней маски на центры напыляемых отверстий в плоскости поверхности испарителя.

Для пояснения изобретения ниже описан пример осуществления способа со ссылками на чертеж, который изображает схему осуществления способа электронно-лучевого напыления.

Способ нанесения вакуумных покрытий осуществлен следующим образом: корпус герметичного электроразьема из титана для пайки со стеклом контактных штырей в отверстиях предварительно покрывался коваром для обеспечения растекания стеклянного изолятора. Покрытие наносилось одновременно на все паяемые отверстия диаметром 2,5 мм и высотой 6 мм. Для этого детали устанавливались в камере электронно-лучевой установки.

Массивный испаритель из ковара 1 являлся основанием оснастки. Деталь 2, собранная соосно с нижней маской 3 из молибдена, поджималась верхней маской-диафрагмой 4 к испарителю 1. Отверстия диафрагмы располагались соосно напыляемым отверстиям детали.

Производился предварительный нагрев детали воздействием расфокусированного электронного пучка на поверхность верхней маски 4, изготовленной из молибдена. По достижении температуры 600oС луч 5 фокусировался, разделялся и наводился в отверстия верхней маски, производилось напыление ковара из всех ванн расплава 6 одновременно. В течение 1 минуты осаждалось покрытие толщиной 20 мкм. Мощность в луче при напылении не превышала 150 Вт, при больших значениях происходил перегрев детали до температуры выше 700oС с возникновением взаимной диффузии титана и ковара и образованием сплава, препятствующего в дальнейшем получению паяного соединения. Отводу избытков тепла способствовали массивная верхняя маска и испаритель через контакт с нижней маской.

Ведение процесса при температуре 600-700oС способствовало высокой адгезии покрытия и нанесению его на удаленную от источника верхнюю часть отверстия. Этому же способствовал и дополнительный нагрев пара, проходящим через него электронным пучком.

Предложенный способ нанесения вакуумных покрытий в отверстиях по сравнению с лучшими аналогичными методами позволяет получить покрытия широкого спектра материалов в отверстиях деталей, изготовленных из металла или диэлектрика, экологически чистым методом с высокой производительностью.

Способ позволяет также автоматизировать технологию, что дает возможность осуществлять металлизацию множества отверстий деталей, например печатных плат, крупными сериями.

Выполнение способа нанесения вакуумных покрытий описанным выше образом обеспечивает возможность пайки титановых деталей со стеклом с получением спаев высокой прочности и стабильности геометрических размеров. Вследствие этого становится возможным получение нового качества выпускаемой продукции, в частности высоких электроизоляционных свойств электроразъемов.

Испытания предложенного способа нанесения вакуумных покрытий показали, что достигнута производительность получения покрытий, недостижимая известными ранее методами.

Похожие патенты RU2211258C2

название год авторы номер документа
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ ЭЛЕКТРОННО-ЛУЧЕВЫМ ИСПАРЕНИЕМ В ВАКУУМЕ 2012
  • Буянкин Алексей Алексеевич
RU2496912C1
Способ нанесения кадмиевого покрытия прецизионным вакуумным напылением на поверхность детали 2018
  • Дмитриев Александр Львович
  • Попов Илья Александрович
  • Синяков Александр Сергеевич
  • Бесхмельницин Андрей Павлович
  • Климин Николай Викентьевич
  • Макаров Владимир Николаевич
  • Данилов Сергей Викторович
  • Статин Сергей Авдеевич
  • Демченко Артем Александрович
  • Валитов Марат Равильевич
RU2708489C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОАНЕМОМЕТРА (ВАРИАНТЫ) 2013
  • Казарян Акоп Айрапетович
RU2548612C2
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОПОЛОСКОВЫХ ПЛАТ ДЛЯ ГИБРИДНЫХ ИНТЕГРАЛЬНЫХ СХЕМ 2001
  • Иовдальский В.А.
RU2206187C1
ЭЛЕКТРОДУГОВОЙ ИСПАРИТЕЛЬ МЕТАЛЛОВ И СПЛАВОВ 2013
  • Савельев Александр Александрович
  • Меркулова Валентина Петровна
RU2510428C1
СПОСОБ МЕТАЛЛИЗАЦИИ ЭЛЕМЕНТОВ ИЗДЕЛИЙ ЭЛЕКТРОННОЙ ТЕХНИКИ 2010
  • Лапин Владимир Григорьевич
  • Петров Константин Игнатьевич
RU2436183C1
СПОСОБ СОЗДАНИЯ ТОКОПРОВОДЯЩИХ ДОРОЖЕК 2012
  • Аносов Василий Сергеевич
  • Володин Василий Васильевич
  • Громов Геннадий Гюсамович
  • Мазикина Елена Владимировна
  • Назаренко Александр Александрович
  • Рябов Сергей Сергеевич
RU2494492C1
СПОСОБ ПОЛУЧЕНИЯ ГРАДИЕНТНОГО НАНОКОМПОЗИТНОГО ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ 2019
  • Савушкина Светлана Вячеславовна
  • Панасова Галина Васильевна
RU2714345C1
СПОСОБ НАНЕСЕНИЯ ПРОСВЕТЛЯЮЩЕГО МНОГОСЛОЙНОГО ШИРОКОПОЛОСНОГО ПОКРЫТИЯ НА ПОВЕРХНОСТЬ ОПТИЧЕСКОГО СТЕКЛА 2015
  • Дьякова Ирина Ивановна
  • Кулагина Людмила Викторовна
RU2597035C1
ВАКУУМНЫЙ ДУГОВОЙ ИСПАРИТЕЛЬ МЕТАЛЛОВ 2013
  • Курбатов Петр Федорович
  • Ватник Сергей Маркович
  • Ведин Иван Александрович
  • Андросов Геннадий Николаевич
  • Бельтюгов Владимир Николаевич
RU2530073C1

Реферат патента 2003 года СПОСОБ НАНЕСЕНИЯ ВАКУУМНЫХ ПОКРЫТИЙ В ОТВЕРСТИЯХ

Изобретение относится к области нанесения покрытий в вакууме, а точнее к нанесению покрытий способом электронно-лучевого нагрева испаряемого материала с одновременным его осаждением на внутренних поверхностях деталей сложной формы. Электронный пучок направляют перпендикулярно к поверхности массивного испарителя, расположенного горизонтально, непосредственно через покрываемые отверстия. Детали с покрываемыми отверстиями располагают на поверхности испарителя, обращенной к электронно-лучевой пушке. Оси отверстий ориентируют перпендикулярно этой поверхности. Отверстия закрываются с двух сторон масками. Маска, прилегающая к испарителю, имеет соосные отверстия, которые обеспечивают поступление паров на покрываемые поверхности. Маска, закрывающая деталь со стороны электронного пучка, выполняет функцию диафрагмы и ограничивает выход паров наружу из напыляемого объема. Для этого отверстия в ней сделаны минимально необходимыми для прохода через них сфокусированного электронного пучка. Технология способа позволяет повысить производительность и стабильность наносимого слоя. 1 ил.

Формула изобретения RU 2 211 258 C2

Способ нанесения вакуумных покрытий в отверстиях, включающий электронно-лучевой нагрев в вакууме массивного испарителя сфокусированным электронным пучком с осаждением испаряемого материала, при котором детали с покрываемыми отверстиями располагают на поверхности испарителя, а электронный пучок, разделенный равномерно по количеству отверстий, направляют вдоль их осей перпендикулярно к поверхности испарителя, отличающийся тем, что покрываемые отверстия закрывают с двух сторон масками, обеспечивающими проход луча и ограничивающими выход паров.

Документы, цитированные в отчете о поиске Патент 2003 года RU2211258C2

СПОСОБ ВЫПОЛНЕНИЯ ОТВЕРСТИЙ 0
SU213517A1
СПОСОБ ВАКУУМНОГО НАНЕСЕНИЯ ПОКРЫТИЯ НА ВНУТРЕННЮЮ ПОВЕРХНОСТЬ ТРУБЧАТОГО ИЗДЕЛИЯ 1992
  • Сидоренко Владимир Ильич
  • Штенников Игорь Валентинович
  • Макаров Алексей Сергеевич
RU2042739C1
SU 1487486 А1, 04.06.1986
Маска для нанесения покрытий 1972
  • Равич Инна Яковлевна
  • Шкляревский Евгений Евгеньевич
  • Аршинова Аэлита Александровна
  • Насикан Степан Иванович
  • Торопцева Татьяна Николаевна
  • Дмитренко Василий Ермолаевич
  • Рябиков Станислав Васильевич
SU445999A1
Устройство для изготовления подшипников 1977
  • Григоров Александр Иосифович
SU718497A1
US 4733047, 22.03.1988
Способ получения молочной кислоты 1922
  • Шапошников В.Н.
SU60A1

RU 2 211 258 C2

Авторы

Анкудинов С.Н.

Дмитриев А.Л.

Черепанов Л.Н.

Даты

2003-08-27Публикация

2001-03-20Подача